Главная - Режиссура
Биологических систем математическое моделирование. Применение моделирования в биологии

В настоящем учебном пособии хорошо представлены основные современные математические модели для анализа биофизических процессов, живых систем в экологии. Книга состоит из трех разделов, в которых описаны базовые модели в биофизике, динамике популяций и экологии, а также даны соответствующие описательные примеры, представлены методы расчета и статистические данные. На данный момент некоторые из приводимых статистических данных устарели. Однако это существенно не влияет на процесс обучения математическому моделированию биологических процессов, и произошедшие изменения при необходимости могут быть учтены преподавателями.

Шаг 1. Выбирайте книги в каталоге и нажимаете кнопку «Купить»;

Шаг 2. Переходите в раздел «Корзина»;

Шаг 3. Укажите необходимое количество, заполните данные в блоках Получатель и Доставка;

Шаг 4. Нажимаете кнопку «Перейти к оплате».

На данный момент приобрести печатные книги, электронные доступы или книги в подарок библиотеке на сайте ЭБС возможно только по стопроцентной предварительной оплате. После оплаты Вам будет предоставлен доступ к полному тексту учебника в рамках Электронной библиотеки или мы начинаем готовить для Вас заказ в типографии.

Внимание! Просим не менять способ оплаты по заказам. Если Вы уже выбрали какой-либо способ оплаты и не удалось совершить платеж, необходимо переоформить заказ заново и оплатить его другим удобным способом.

Оплатить заказ можно одним из предложенных способов:

  1. Безналичный способ:
    • Банковская карта: необходимо заполнить все поля формы. Некоторые банки просят подтвердить оплату – для этого на Ваш номер телефона придет смс-код.
    • Онлайн-банкинг: банки, сотрудничающие с платежным сервисом, предложат свою форму для заполнения. Просим корректно ввести данные во все поля.
      Например, для " class="text-primary">Сбербанк Онлайн требуются номер мобильного телефона и электронная почта. Для " class="text-primary">Альфа-банка потребуются логин в сервисе Альфа-Клик и электронная почта.
    • Электронный кошелек: если у Вас есть Яндекс-кошелек или Qiwi Wallet, Вы можете оплатить заказ через них. Для этого выберите соответствующий способ оплаты и заполните предложенные поля, затем система перенаправит Вас на страницу для подтверждения выставленного счета.
  2. Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Введение

    Современная биология активно использует различные разделы математики: теорию вероятностей и статистику, теорию дифференциальных уравнений, теорию игр, дифференциальную геометрию и теорию множеств для формализации представлений о структуре и принципах функционирования живых объектов.

    Многие ученые высказывали мысль о том, что область знаний становится наукой только тогда, когда выражает свои законы в виде математических соотношений. В соответствии с этим самая "научная" наука - физика - наука о фундаментальных законах природы, математика для нее - естественный язык. В биологии, для которой предметом изучения являются индивидуальные живые системы, дело обстоит сложнее. Только в нашем веке появились экспериментальные биохимия, биофизика, молекулярная биология, микробиология, вирусология, которые изучают воспроизводимые in vitro явления и активно используют физические, химические и математические методы.

    В связи с индивидуальностью биологических явлений говорят именно о математических моделях в биологии (а не просто о математическом языке). Слово модель здесь подчеркивает то обстоятельство, что речь идет об абстракции, идеализации, математическом описании скорее не самой живой системы, а некоторых качественных характеристик протекающих в ней процессов. При этом удается сделать и количественные предсказания, иногда в виде статистических закономерностей. В отдельных случаях, например, в биотехнологии, математические модели, как в технике, используются для выработки оптимальных режимов производства.

    1. Классы задач и математический аппарат

    При разработки любой модели необходимо определить объект моделирования, цель моделирования и средства моделирования. В соответствии с объектом и целями математические модели в биологии можно подразделить на три больших класса. Первый - регрессионные модели, включает эмпирически установленные зависимости (формулы, дифференциальные и разностные уравнения, статистические законы) не претендующие на раскрытие механизма изучаемого процесса. Приведем два примера таких моделей.

    1. Зависимость между количеством производителей хамсы S и количеством молоди от каждого нерестившегося производителя в большой имитационной модели динамики рыбного стада Азовского моря выражается в виде эмпирической формулы (Горстко и др, 1984)

    Здесь S - количество сеголеток (штуки) на каждого нерестившегося производителя; x - количество зашедших весной из Черного моря в Азовское производителей хамсы (млрд штук); - среднеквадратичное отклонение.

    1. Скорость поглощения кислорода опадом листьев может быть достаточно хорошо описывается формулой для логарифма скорости поглощения кислорода:

    Здесь Y поглощение кислорода, измеренное в мкл(0,25 г)-1ч-1.; D - число дней, в течение которых выдерживались образцы; B - процентное содержание влаги в образцах; Т - температура, измеренная в градусах С.

    Эта формула дает несмещенные оценки для скорости поглощения кислорода во всем диапазоне дней, температур и влажностей, которые наблюдались в эксперименте, со средним квадратичным отклонением в поглощении кислорода, равном =0.3190.321.

    (Из книги: Д.Джефферс "Введение в системный анализ: применение в экологии", М., 1981)

    Коэффициенты в регрессионных моделях обычно определяются с помощью процедур идентификации параметров моделей по экспериментальным данным. При этом чаще всего минимизируется сумма квадратов отклонений теоретической кривой от экспериментальной для всех точек измерений. Т.е. коэффициенты модели подбираются таким образом: чтобы минимизировать функционал:

    Здесь i - номер точки измерения; xe - "экспериментальные значения переменных; хt - теоретические значения переменных; a1, a2... - параметры, подлежащие оценке; wi - "вес" i-го измерения; N - число точек измерения.

    Второй класс - имитационные модели конкретных сложных живых систем, как правило, максимально учитывающие имеющуюся информацию об объекте. Имитационные модели применяются для описания объектов различного уровня организации живой материи - от биомакромолекул до моделей биогеоценозов. В последнем случае модели должны включать блоки, описывающие как живые, так и "косные" компоненты (См. Экология математическая). Классическим примером имитационных моделей являются модели молекулярной динамики, в которых задаются координаты и импульсы всех атомов, составляющих биомакромолекулу и законы их взаимодействия. Вычисляемая на компьютере картина "жизни" системы позволяет проследить, как физические законы проявляются в функционировании простейших биологических объектов - биомакромолекул и их окружения. Сходные модели, в которых элементами (кирпичиками) уже являются не атомы, а группы атомов, используются в современной технике компьютерного конструирования биотехнологических катализаторов и лекарственных препаратов, действующих на определенные активные группы мембран микроорганизмов, вирусов, или выполняющих другие направленные действия.

    Имитационные модели созданы для описания физиологических процессов. Происходящих в жизненно важных органах: нервном волокне, сердце, мозге, желудочно-кишечном тракте, кровеносном русле. На них проигрываются "сценарии" процессов, протекающих в норме и при различных патологиях, исследуется влияние на процессы различных внешних воздействий, в том числе лекарственных препаратов. Имитационные модели широко используются для описания продукционного процесса растений и применяются для разработки оптимального режима выращивания растений с целью получения максимального урожая, или получения наиболее равномерно распределенного во времени созревания плодов. Особенно важны такие разработки для дорогостоящего и энергоемкого тепличного хозяйства.

    2. Качественные (базовые) модели

    В любой науке существуют простые модели, которые поддаются аналитическому исследованию и обладают свойствами, которые позволяют описывать целый спектр природных явлений. Такие модели называют базовыми. В физике классической базовой моделью является гармонический осциллятор (шарик - материальная точка - на пружинке без трения). Базовые модели, как правило, подробно изучаются в различных модификациях. В случае осциллятора шарик может быть в вязкой среде, испытывать периодические или случайные воздействия, например, подкачку энергии, и проч.. После того, как досконально математически изучена суть процессов на такой базовой модели, по аналогии становится понятными явления, происходящие в гораздо более сложных реальных системах. Например, релаксация конфирмационных состояний биомакромолекулы рассматривается аналогично осциллятору в вязкой среде. Таким образом, благодаря простоте и наглядности, базовые модели становятся чрезвычайно полезными при изучении самых разных систем.

    Все биологические системы различного уровня организации, начиная от биомакромолекул вплоть до популяций, являются термодинамический неравновесными, открытыми для потоков вещества и энергии. Поэтому нелинейность - неотъемлемое свойство базовых систем математической биологии. Несмотря на огромное разнообразие живых систем, можно выделить некоторые важнейшие присущие им качественные свойства: рост, самоограничение роста, способность к переключениям - существование в двух или нескольких стационарных режимов, автоколебательные режимы (биоритмы), пространственная неоднородность, квазистохастичность. Все эти свойства можно продемонстрировать на сравнительно простых нелинейных динамических моделях, которые и выступают в роли базовых моделей математической биологии.

    3. Неограниченный рост. Экспоненциальный рост. Автокатализ

    математический биология молекулярный популяция

    В основе любых моделей лежат некоторые предположения. Модель, построенная на основе этих предположений, становится самостоятельным математическим объектом, который можно изучать с помощью арсенала математических методов. Ценность модели определяется тем, насколько характеристики модели соответствуют свойствам моделируемого объекта. Одно из фундаментальных предположений, лежащих в основе всех моделей роста - пропорциональность скорости роста численности популяции, будь то популяция зайцев или популяция клеток. В основе этого предположения лежит тот общеизвестный факт, что важнейшей характеристикой живых систем является их способность к размножению. Для многих одноклеточных организмов или клеток, входящих в состав клеточных тканей - это просто деление, то есть удвоение числа клеток через определенный интервал времени, называемый характерным временем деления. Для сложно организованных растений и животных размножение происходит по более сложному закону, но в простейшей модели можно предположить, что скорость размножения вида пропорциональна численности этого вида.

    Математически это записывается с помощью дифференциального уравнения, линейного относительно переменной x, характеризующей численность (концентрацию) особей в популяции:

    Здесь R в общем случае может быть функцией как самой численности, так и времени, или зависеть от других внешних и внутренних факторов.

    Предположение о пропорциональности скорости роста популяции ее численности было высказано еще в 18 веке Томасом Робертом Мальтусом (1766-1834) в книге "О росте народонаселения" (1798). Согласно закону (1), если коэффициент пропорциональности R=r=сonst (как это предполагал Мальтус), численность будет расти неограниченно по экспоненте.

    В своих работах Мальтус обсуждает последствия этого закона в свете того обстоятельства, что производство продовольствия и других товаров растет линейно, и следовательно, популяция, растущая экспоненциально, обречена на голод.

    Для большинства популяций существуют ограничивающие факторы, и по тем или иным причинам рост популяции прекращается. Единственное исключение представляет человеческая популяция, которая на протяжении всего исторического времени растет даже быстрее, чем по экспопненте. (См. Экология математическая, раздел Рост численности человечества). Исследования Мальтуса оказали большое влияние как на экономистов, так и на биологов. В частности, Чарльз Дарвин пишет в своих дневниках, что положенные в основу модели Мальтуса предположения и пропорциональности скорости роста популяции ее численности представляются весьма убедительными, и из этого следует неограниченный экспоненциальный рост численности. В то же время, ни одна из популяций в природе не растет до бесконечности. Следовательно, существуют причины, препятствующие такому росту. Одну из таких причин Дарвин видит в борьбе видов за существование.

    Закон экспоненциального роста справедлив на определенной стадии роста для популяций клеток в ткани, водорослей или бактерий в культуре. В моделях математическое выражение, описывающее увеличение скорости изменения величины с ростом самой этой величины, называют автокаталитическим членом (авто - само, катализ - модификация скорости реакции, обычно ускорение, с помощью веществ, не принимающих участия в реакции) Таким образом, автокатализ - "самоускорение" реакции.

    4. Ограниченный рост. Уравнение Ферхюльста

    Базовой моделью, описывающей ограниченный рост, является модель Ферхюльста (1848):

    Здесь параметр K носит название "емкости популяции" и выражается в единицах численности (или концентрации). Он не имеет какого-либо простого физического или биологического смысла и носит, системный характер, то есть определяется целым рядом различных обстоятельств, среди них ограничения на количество субстрата для микроорганизмов, доступного объема для популяции клеток ткани, пищевой базы или убежищ для высших животных.

    График зависимости правой части уравнения (2) от численности x и численности популяции от времени представлены на рис. 1 (а и б).

    Рис. 1 Ограниченный рост. Зависимость величины скорости роста от численности (а) и численности от времени (б) для логистического уравнения

    В последние десятилетия уравнение Ферхюльста переживает вторую молодость. Изучение дискретного аналога уравнения (2) выявило совершенно новые и замечательные его свойства . Рассмотрим численность популяции в последовательные моменты времени. Это соответствует реальной процедуре пересчета особей (или клеток) в популяции. В самом простом виде зависимость численности на временном шаге номер n+1 от численности предыдущем шаге n можно записать в виде:

    Поведение во времени переменной xn может носить характер не только ограниченного роста, как было для непрерывной модели (2), но также быть колебательным или квазистохастическим (рис.2).

    Рис. 2 Вид функции зависимости численности на последующем шаге от численности на предыдущем шаге (а) и поведение численности во времени (б) при разных значениях параметра r: 1 - ограниченный рост; 2 - колебания, 3 - хаос

    Тип поведения зависит от величины константы собственной скорости роста r. Кривые, представляющие вид зависимости значения численности в данный момент времени (t+1) от значений численности в предыдущий момент времени t представлены на рис. 2 слева. Справа представлены кривые динамики численности - зависимости числа особей в популяции от времени. Сверху вниз значение параметра собственной скорости роста r увеличивается.

    Характер динамики численности определяется видом кривой зависимости F(t+1) от F(t). Эта кривая отражает изменение скорости прироста численности от самой численности. Для всех представленных на рис. 2 слева кривых эта скорость нарастает при малых численностях, и убывает, а затем обращается в нуль при больших численностях. Динамический тип кривой роста популяции зависит от того, насколько быстро происходит рост при малых численностях, т.е. определяется производной (тангенсом угла наклона этой кривой) в нуле, который определяется коэффициентом r - величиной собственной скорости роста. Для небольших r (r<3) численность популяции стремится к устойчивому равновесию. Когда график слева становится более крутым, устойчивое равновесие переходит в устойчивые циклы. По мере увеличения численности длина цикла растет, и значения численности повторяются через 2, 4, 8,..., 2n поколений. При величине параметра r>5,370 происходит хаотизация решений. При достаточно больших r динамика численности демонстрирует хаотические всплески (вспышки численности насекомых).

    Уравнения такого типа неплохо описывают динамику численности сезонно размножающихся насекомых с неперекрывающимися поколениями. При этом некоторые достаточно просто измеряемые характеристики популяций, демонстрирующих квазистохастическое поведение, имеют регулярный характер. В некотором смысле, чем хаотичнее поведение популяции, тем оно предсказуемее. Например, при больших x амплитуда вспышки может быть прямо пропорциональна времени между вспышками.

    Дискретное описание оказалось продуктивным для систем самой различной природы. Аппарат представления динамического поведения системы на плоскости в координатах позволяет определить, является наблюдаемая система колебательной или квазистохастической. Например, представление данных электрокардиограммы позволило установить, что сокращения человеческого сердца в норме носят нерегулярный характер, а в период приступов стенокардии или в прединфарктном состоянии ритм сокращения сердца становится строго регулярным. Такое "ужесточение" режима является защитной реакцией организма в стрессовой ситуации и свидетельствует об угрозе жизни системы.

    Отметим, что решение разностных уравнений лежит в основе моделирования любых реальных биологических процессов. Богатство динамического поведения модельных траекторий разностных уравнений является основой их успешного применения для описания сложных природных явлений. При этом ограниченность параметрических областей существования определенного типа режимов служит дополнительным основанием для оценки адекватности предлагаемой модели.

    Еще более интересные математические объекты получаются, если переписать уравнение (3) в виде:

    и рассматривать константу с в комплексной области. При этом получаются объекты, называемые множествами Мандельброта Подробнее об этих множествах можно прочитать в книге "Красота фракталов" (Образы комплексных динамических систем), там же приведены их многочисленные красочные изображения. Имеют ли эти объекты биологическую интерпретацию, имеющую под собой глубокий смысл, или это просто красивый "сюрприз", который нам преподносит базовая система? Пока на этот вопрос нет окончательного ответа.

    5. Ограничения по субстрату. Модели Моно и Михаэлиса-Ментен

    Одной из причин ограничения роста может быть недостаток пищи (лимитирование по субстрату на языке микробиологии). Микробиологи давно подметили, что в условиях лимитирования по субстрату скорость роста растет пропорционально концентрации субстрата, а если субстрата вдоволь - выходит на постоянную величину, определяемую генетическими возможностями популяции. В течение некоторого времени численность популяции растет экспоненциально, пока скорость роста не начинает лимитироваться какими-либо другими факторами. Это означает, что зависимость скорости роста R в формуле (1) от субстрата может быть описана в виде:

    Здесь КS - константа, равная концентрации субстрата, при которой скорость роста равна половине максимальной. 0 - максимальная скорость роста, равная величине r в формуле (2). Это уравнение было впервые написано крупнейшим французким биохимиком. Жаком Моно (1912-1976). Совместно с Франсуа Жакобом им были разработаны представления о роли транспортной рибонуклеиновой кислоты (mRNA) в аппарате размножения клетки. В развитие представлений о генных комплексах, которые были ими названы оперонами, Жакоб и Моно постулировали существование класса генов, которые регулируют функционирование других генов путем воздействия на синтез транспортной РНК. Такой механизм генной регуляции впоследствии полностью подтвердился для бактерий, за что обоим ученым (а также Андре Львову) была присуждена Нобелевская премия 1965 г. Ниже рассмотрена знаменитая модель генной регуляции синтеза двух ферментов, названная триггерной моделью Жакоба и Моно.

    Жак Моно был также философом науки и незаурядным писателем. В своей знаменитой книге "Случайность и необходимость", 1971 Моно высказывает мысли о случайности возникновения жизни и эволюции, а также о роли человека и его ответственности за происходящие на Земле процессы.

    Любопытно, что модель Моно (5) по форме совпадает с уравнением Михаэлиса-Ментен (1913), которое описывает зависимость скорости ферментативной реакции от концентрации субстрата при условии, когда общее количество молекул фермента постоянно и значительно меньше количества молекул субстрата:

    Здесь КМ - константа Михаэлиса, одна из важнейших для ферментативных реакций величина, определяемая экспериментально, имеющая смысл и размерность концентрации субстрата, при которой скорость реакции равна половине максимальной.

    Закон Михаэлиса-Ментен выводится на основании уравнений химической кинетики и описывает скорость образования продукта в соответствии со схемой:

    Сходство уравнений (5) и (6) не случайно. Формула Михаэлиса-Ментен (5) отражает более глубокие закономерности кинетики ферментативных реакций, которые в свою очередь определяют жизнедеятельность и рост микроорганизмов, описываемые эмпирической формулой (5).

    6. Базовая модель взаимодействия. Конкуренция. Отбор.

    Биологические системы вступают во взаимодействие друг с другом на всех уровнях, будь то взаимодействие биомакромолекул в процессе биохимических реакций, или взаимодействие видов в популяциях. Взаимодействие может протекать в структурах, тогда система может быть охарактеризована определенным набором состояний, так происходит на уровне субклеточных, клеточных и организменных структур. Кинетика процессов в структурах в математических моделях как правило описывается с помощью систем уравнений для вероятностей состояний комплексов.

    В случае, когда взаимодействие происходит случайно, его интенсивность определяется концентрацией взаимодействующих компонентов и их подвижностью обобщенной диффузией. Именно такие представления приняты в базовых моделях взаимодействия видов. Классической книгой, в которой рассматриваются математические модели взаимодействия видов стала книга Вито Вольтерра "Математическая теория борьбы за существование" (1931) . Книга, построена как математический трактат, в ней постулированы в математической форме свойства биологических объектов и их взаимодействий, а затем эти взаимодействия исследуются как математические объекты, Именно с этой работы В.Вольтерра начались современная математическая биология и математическая экология.

    Вито Вольтерра (1860-1940) завоевал мировую известность своими работами в области интегральных уравнений и функционального анализа. Кроме чистой математики его всегда интересовали вопросы применения математических методов в биологии, физике, социальных науках. В годы службы в ВВС в Италии, он много работал над вопросами военной техники и технологии (задачи баллистики, бомбометания, эхолокации). В этом человеке сочетался талант ученого и темперамент активного политика, принципиального противника фашизма. Он был единственным итальянским сенатором, проголосовавшим против передачи власти Муссолини. Когда в годы фашистской диктатуры в Италии Вольтерра работал во Франции, Муссолини, желая привлечь на свою сторону всемирно известного ученого, предлагал ему различные высокие посты в фашистской Италии, но всегда получал решительный отказ. Антифашистская позиция привела Вольтерра к отказу от кафедры в Римском университете и от членства в итальянских научных обществах.

    Серьезно вопросами динамики популяций В.Вольтерра стал интересоваться с 1925 г. после бесед с молодым зоологом Умберто Д"Анкона, будущим мужем его дочери, Луизы. Д"Анкона, изучая статистику рабных рынков на Адриатике, установил любопытный факт: когда в годы первой мировой войны (и сразу вслед за ней) интенсивность промысла резко сократилась, то в улове увеличилась относительная доля хищных рыб. Такой эффект предсказывался моделью "хищник-жертва", предложенной Вольтерра. Эту модель мы рассмотрим ниже. По сути дела это был первый успех математической биологии.

    Вольтерра предположил по аналогии со статистической физикой, что интенсивность взаимодействия пропорциональна вероятности встречи (вероятности столкновения молекул), то есть произведению концентраций. Это и некоторые другие предположения (См. Популяционная динамика) позволили построить математическую теорию взаимодействия популяций одного трофического уровня (конкуренция) или разных трофическиъх уровней (хищник-жертва).

    Системы, изученные Вольтерра, состоят из нескольких биологических видов и запаса пищи, который используют некоторые из рассматриваемых видов. О компонентах системы формулируются следующие допущения.

    1. Пища либо имеется в неограниченном количестве, либо ее поступление с течением времени жестко регламентировано.

    2. Особи каждого вида отмирают так, что в единицу времени погибает постоянная доля существующих особей.

    3. Хищные виды поедают жертвы, причем в единицу времени количество съеденных жертв всегда пропорционально вероятности встречи особей этих двух видов, т.е. произведению количества хищников на количество жертв.

    4. Если имеются пища в неограниченном количестве и несколько видов, которые способны ее потреблять, то доля пищи, потребляемая каждым видом в единицу времени, пропорциональна количеству особей этого вида, взятого с некоторым коэффициентом, зависящим от вида (модели межвидовой конкуренции).

    5. Если вид питается пищей, имеющейся в неограниченном количестве, прирост численности вида за единицу времени пропорционален численности вида.

    6. Если вид питается пищей, имеющейся в ограниченном количестве, то его размножение регулируется скоростью потребления пищи, т.е. за единицу времени прирост пропорционален количеству съеденной пищи.

    Перечисленные гипотезы позволяют описывать сложные живые системы при помощи систем обыкновенных дифференциальных уравнений, в правых частях которых имеются суммы линейных и билинейных членов. Как известно, такими уравнениями описываются и системы химических реакций.

    Действительно, согласно гипотезам Вольтерра, скорость процесса отмирания каждого вида пропорциональна численности вида. В химической кинетике это соответствует мономолекулярной реакции распада некоторого вещества, а в математической модели - отрицательным линейным членам в правых частях уравнений. Согласно представлениям химической кинетики, скорость бимолекулярной реакции взаимодействия двух веществ пропорциональна вероятности столкновения этих веществ, т.е. произведению их концентрации. Точно так же, согласно гипотезам Вольтерра, скорость размножения хищников (гибели жертв) пропорциональна вероятности встреч особей хищника и жертвы, т.е. произведению их численностей. И в том и в другом случае в модельной системе появляются билинейные члены в правых частях соответствующих уравнений. Наконец, линейные положительные члены в правых частях уравнений Вольтерра, отвечающие росту популяций в неограниченных условиях, соответствуют автокаталитическим членам химических реакций. Такое сходство уравнений в химических и экологических моделях позволяет применить для математического моделирования кинетики популяций те же методы исследований, что и для систем химических реакций. Можно показать, что вольтеровские уравнения могут быть получены не только из локального "принципа встреч", ведущего свое происхождение из статистической физики, но и исходя из баланса масс каждого из компонентов ценоза и энергетических потоков между этими компонентами.

    Рассмотрим простейшую из Вольтерра моделей модель отбора на основе конкурентных отношений. Эта модель работает при рассмотрении конкурентных взаимодействий любой природы биохимических соединений различного типа оптической активности, конкурирующих клеток, особей, популяций. Ее модификации применяются для описания конкуренции в экономике.

    Пусть имеется два совершенно одинаковых вида с одинаковой скоростью размножения, которые являются антагонистами, то есть при встрече они угнетают друг друга. Модель их взаимодействия может быть записана в виде:

    Согласно такой модели, симметричное состояния сосуществования обоих видов является неустойчивым, один из взаимодействующих видов обязательно вымрет, а другой размножится до бесконечности.

    Введение ограничения на субстрат (типа 5) или системного фактора, ограничивающего численность каждого из видов (типа 2) позволяет построить модели, в которых один из видов выживает и достигает определенной стабильной численности. Они описывают известный в экспериментальной экологии принцип конкуренции Гаузе, в соответствии с которым в каждой экологической нише выживает только один вид.

    В случае, когда виды обладают различной собственной скоростью роста, коэффициенты при автокаталитических членах в правых частях уравнений будут различными, а фазовый портрет системы становится несимметричным. При различных соотношениях параметров в такой системе возможно как выживание одного из двух видов и вымирание второго (если взаимное угнетение более интенсивно, чем саморегуляция численности), так и сосуществование обоих видов, в случае, когда взаимное угнетение меньше, чем самоограничение численности каждого из видов.

    Рис. 4 Схема синтеза двух ферментов Жакоба и Моно (а) и фазовый портрет триггерной систем (б)

    Еще одной классической триггерной системой является модель альтернативного синтеза двух ферментов Жакоба и Моно. Схема синтеза приведена на рис. 4а. Ген-регулятор каждой системы синтезирует неактивный репрессор. Этот репрессор, соединяясь с продуктом противоположной системы синтеза ферментов, образует активный комплекс. Активный комплекс, обратимо реагируя с участком структурного гена опероном, блокирует синтез mРНК. Таким образом, продукт второй системы Р2 является корепрессором первой системы, а Р1 - корепрессором второй. При этом в процессе корепрессии могут участвовать одна, две и более молекул продукта. Очевидно, что при таком характере взаимодействий при интенсивной работе первой системы вторая будет заблокирована, и наоборот. Модель такой системы предложена и подробно изучены в школе проф. Д.С.Чернавского После соответствующих упрощений, уравнения, описывающие синтез продуктов Р1 и Р2 имеют вид:

    Здесь P1, P2 - концентрации продуктов, величины A1, A2, B1, B2, выражаются через параметры своих систем. Показатель степени m показывает, сколько молекул активного репрессора (соединений молекул продукта с молекулами неактивного репрессора, который предполагается в избытке) соединяются с опероном для блокировки синтеза mRNK.

    Фазовый портрет системы, (изображение траекторий системы при разных начальных условиях на координатной плоскости, по осям которой отложены величины переменных системы), для m=2 изображен на рис.4б. Он имеет тот же вид, что и фазовый портрет системы двух конкурирующих видов. Сходство свидетельствует о том, что в основе способности системы к переключениям лежит конкуренция - видов, ферментов, состояний.

    Рис. 5 Модель химических реакций Лотки. Фазовый портрет системы при значениях параметров, соответствующих затухающим колебаниям

    7. Классические модели Лотки и Вольтерра

    Первое понимание, что собственные ритмы возможны в богатой энергией системе за счет специфики взаимодействия ее компонентов пришло после появления простейших нелинейных моделей взаимодействия - химических веществ в уравнениях Лотки, и взаимодействия видов - в моделях Вольтерра .

    Уравнение Лотки рассмотрено им в 1926 г. в книге и описывает систему следующих химических реакций

    В некотором объеме находится в избытке вещество А. Молекулы А с некоторой постоянной скоростью превращаются в молекулы вещества X (реакция нулевого порядка). Вещество X может превращаться в вещество Y, причем скорость этой реакции тем больше, чем больше конценрация вещества Y - реакция второго порядка. В схеме это отражено обратной стрелкой над символом y. Молекулы Y в свою очередь необратимо распадаются, в результате образуется вещество B (реакция первого порядка).

    Запишем систему уравнений, описывающих реакцию:

    Здесь X, Y, B - концентрации химических компонентов. Первые два уравнения этой системы не зависят от B, поэтому их можно рассматривать отдельно. При определенных значениях параметров в системе возможны затухающие колебания.

    Базовой моделью незатухающих колебаний служит классическое уравнение Вольтерра, описывающее взаимодействие видов типа хищник-жертва. Как и в моделях конкуренции (8), взаимодействие видов описывается в соответствии с принципами химической кинетики: скорость убыли количества жертв (x) и скорость прибыли количества хищников (y) считается пропорциональными их произведению

    На рис. 6 представлены фазовый портрет системы, по осям которого отложены численности жертв и хищников - (а) и кинетика численности обоих видов - зависимость численности от времени-(б). Видно, что численности хищников и жертв колеблются в противофазе.

    Рис. 6 Модель хищник-жертва Вольтерра, описывающая незатухающие колебания численности. А. Фазовый портрет. Б. Зависимость численности жертвы и хищника от времени

    Модель Вольтерра имеет один существенный недостаток. Параметры колебаний ее переменных меняются при флуктуациях параметров и переменных системы. Такую систему называют негрубой.

    Этот недостаток устранен в более реалистичных моделях. Модификация модели Вольтерра с учетом ограниченности субстрата в форме Моно (уравнение 5) и учет самоограничения численности (как в уравнении 2) приводит к модели, подробно изученной А.Д.Базыкиным в книге "Биофизика взаимодействующих популяций" (1985).

    Система (11 представляет собой некий кентавр, составленный из базовых уравнений (1, 2, 5, 10)и объединяющий их свойства. Действительно, при малых численностях и в отсутствие хищника жертва (x) будет размножаться по экспоненциальному закону(1). Хищник (y) в отсутствие жертв будут вымирать также по экспоненте. Если особей того или иного вида много, в соответствии с базовой моделью (2) срабатывает системный ферхюльстовский фактор (член -Ex2 в первом уравнении, и -My2 - во втором). Интенсивность взаимодействия видов считается пропорциональной произведению их численностей (как в модели (10)) и описывается в форме Моно (модель 5). Здесь роль субстрата играет вид-жертва, а роль микроорганизмов - вид-хищник. Таким образом, модель (11) брала в себя свойства базовых моделей (1), (2), (5), (10).

    Но модель (11) представляет собой не просто сумму свойств этих моделей. С ее помощью можно описать и гораздо более сложные типы поведения взаимодействующих видов: наличие двух устойчивых стационарных состояний, затухающие колебания численностей и проч. При некоторых значениях параметров система становится автоколебательной. В ней с течением времени устанавливается режим, при котором переменные изменяются периодически с постоянным периодом и амплитудой независимо от начальных условий.

    8. Волны жизни

    До сих пор мы говорили о базовых моделях поведения живых систем во времени. Стремление к росту и размножению ведет к распространению в пространстве, занятию нового ареала, экспансии живых организмов. Жизнь распространяется так же как пламя по степи во время степного пожара. Эта метафора отражает тот факт, что пожар (в одномерном случае - распространение пламени по бикфордову шнуру) описывается с помощью той же базовой модели, что и распространение вида. Знаменитая в теории горения модель ПКП (Петровского - Колмогорова - Пискунова) впервые была предложена ими в 1937 г. именно в биологической постановке как модель распространения доминирующего вида в пространстве. Все три автора этой работы являются крупнейшими российскими математиками. Академик Иван Георгиевич Петровский (1901-1973) - автор фундаментальных трудов по теории дифференциальных уравнений, алгебре, геометрии, математической физике, в течение более 20 лет был ректором Московского Государственного университета им. М.В.Ломоносова. (1951-1973). Андрей Николаевич Колмогоров (1903--) глава российской математической школы по теории вероятностей и теории функций, автор фундаментальных трудов по математической логике, топологии, теории дифференциальных уравнений, теории информации, организатор школьного и университетского математического образования, написал несколько работ, в основу которых положены биологические постановки. В частности в 1936 г. он предложил и подробно исследовал обобщенную модель взаимодействия видов типа хищник-жертва (исправленный и дополненный вариант 1972).(См. Популяционная динамика)

    Рассмотрим постановку задачи о распространении вида в активной - богатой энергией (пищей) среде. Пусть в любой точке прямой r>0 размножение вида описывается функцией f(x) = x(1-x). В начальный момент времени вся область слева от нуля занята видом x, концентрация которого близка к единице.. Справа от нуля - пустая территория. В момент времени t=0 вид начинает распространяться (диффундировать) вправо с константой диффузии D. Процесc описывается уравнением:

    При t>0 в такой системе начинает распространяться волна концентраций в область r>0, которая является результатом двух процессов: случайного перемещения особей (диффузии частиц) и размножения, описываемого функцией f(x). С течением времени фронт волны перемещается вправо, причем его форма приближается к определенной предельной форме. Скорость перемещения волны определяется коэффициентом диффузии и формой функции f(x), и для функции f(x), равной нулю при x=0 и x=1 и положительной в промежуточных точках, выражается простой формулой: =2Df"(0).

    Изучение пространственного перемещения в модели хижник-жертва (10) показывает, что в такой системе в случае неограниченного пространства будут распространяться волны "бегства и погони", а в ограниченном пространстве установятся стационарные пространсвенно неоднородные структуры (диссипативные структуры), или автоволны, в зависимости от параметров системы.

    9. Автоволны и диссипативные структуры. Базовая модель "брюсселятор"

    На рассмотренной выше одномерной модели (14) видно, что взаимодействие нелинейной химической реакции и диффузии приводит к нетривиальным режимам. Еще более сложного поведения следует ожидать в двумерных моделях, описывающих взаимодействие компонентов системы. Первая такая модель была изучена Тьюрингом в работе под названием "Химические основы морфогенеза". Алан М.Тьюринг (1912-1954) английский математик и логик, прославился своими работами по компьютерной логике и терии автоматов. В 1952 г. он опубликовал первую часть исследования, посвященного математической теории образования структур в первоначально однородной системе, где одновременно проходят химические реакции, в том числе автокаталитические процессы, сопровождаемые потреблением энергии, и пассивные процессы переноса - диффузия. Это исследование осталось незаконченным, так как он покончил жизнь самоубийством, находясь под действием депрессантов, которыми его принудительно лечили в тюрьме, где он отбывал срок по обвинению в гомосексуализме.

    Работа Тьюринга стала классической, ее идеи легли в основу современной теории нелинейных систем, теории самоорганизации и синергетики. Рассматривается система уравнений:

    Уравнения такого типа называются уравнениями "реакция-диффузия". В линейных системах диффузия процесс, который приводит к выравниванию концентраций во всем реакционном объеме. Однако в случае нелинейного взаимодействия переменных x и y, в системе может возникать неустойчивость гомогенного стационарного состояния и образуются сложные пространственно-временные режимы типа автоволн или диссипативных структур - стационарных во времени и неоднородных по пространству распределений концентраций, существование которых поддерживается в активных средах за счет потребления энергии системы в процессах диссипации. Условием возникновения структур в таких системах является различие коэффициентов диффузии реагентов, а именно, наличие близкодействующего "активатора" с малым коэффициентом диффузии и дальнодействующего "ингибитора" с большим коэффициентом диффузии.

    Такие режимы в двухкомпонентной системе были изучены в деталях на базовой модели под названием "брюсселятор" (Пригожин и Лефевр, 1968), названной в честь брюссельской научной школы под руководством И.Р.Пригожина, в которой наиболее интенсивно проводились эти исследования.

    Илья Романович Пригожин (род 1917 г. в Москве) - всю жизнь работал в Бельгии. С 1962 г. он - директор Международного Сольвеевского института физической химии в Брюсселе, а с 1967 г. - директор Центра статистической механики и термодинамики Техасского университета (США).

    В 1977 г. он получил Нобелевскую премию за работы по нелинейной термодинамике, в частности по теории диссипативных структур - устойчивых во времени неоднородных в пространстве структур. Пригожин является автором и соавтором целого ряда книг ["Термодинамическая теория структуры, устойчивости и флуктуаций", "Порядок из хаоса", "Стрела времени", и др.], в которых он развивает математические, физико-химические, биологические и философские идеи теории самоорганизации в нелинейных системах, исследует причины и закономерности рождения "порядка из хаоса" в богатых энергией открытых для потоков вещества и энергии системах, далеких от термодинамического равновесия, под действием случайных флуктуаций.

    Классическая модель "брюсселятор" имеет вид

    и описывает гипотетическую схему химических реакций:

    Ключевой является стадия превращения двух молекул x и одной молекулы y в x так называемая тримолекулярная реакция. Такая реакция возможна в процессах с участием ферментов с двумя каталитическими центрами. Нелинейность этой реакции в сочетании с процессами диффузии вещества и обеспечивает возможность пространственно-временных режимов, в том числе образование пространственных структур в первоначально однородной системе морфогенез.

    Заключение

    Современная математическая биология использует различный математический аппарат для моделирования процессов в живых системах и формализации механизмов, лежащих в основе биологических процессов. Имитационные модели позволяют на компьютерах моделировать и прогнозировать процессы в нелинейных сложных системах, каковыми являются все живые системы, далекие от термодинамического равновесия. Базовые модели математической биологии в виде простых математических уравнений отражают самые главные качественные свойства живых систем: возможность роста и его ограниченность, способность к переключениям, колебательные и стохастические свойства, пространственно-временные неоднородности. На этих моделях изучаются принципиальные возможности пространственно-временной динамики поведения систем, их взаимодействия, изменения поведения систем при различных внешних воздействиях - случайных, периодических и т.п. Любая индивидуальная живая система требует глубокого и детального изучения, экспериментального наблюдения и построения своей собственной модели, сложность которой зависит от объекта и целей моделирования.

    Литература

    1. Вольтерра В. Математическая теория борьбы за существование. М., Наука, 1976, 286 с.

    2. Пайтген Х.-О., Рихтер П.Х. Красота фракталов. Образы комплексных динамических систем. М., Мир, 1993, 176 с.

    3. Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М., Изд. МГУ, 1993, 301 с.

    4. Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математическая биофизика. М., Наука, 1984, 304 с.

    5. Рубин А.Б., Пытьева Н.Ф., Ризниченко Г.Ю. Кинетика биологическизх процессов. М., МГУ., 1988

    6. Свирежев Ю.М., Логофет. Устойчивость биологических сообществ М., Наука, 1978, 352c

    7. Базыкин А.Д. Биофизика взаимодействующих популяций. М., Наука, 1985, 165 с.

    8. J.D.Murray "Mathematical Biology", Springer, 1989, 1993.

    Размещено на Allbest.ru

    ...

    Подобные документы

      Специфика использования математических моделей в биологии. Пример определения зависимости между количеством и качеством потомства. Особенности имитационных и базовых моделей для описания ограниченного роста, конкуренции, отбора и волн жизни организмов.

      реферат , добавлен 09.10.2013

      Определение удельной скорости роста популяции бактерий. Решение дифференциального уравнения первого порядка. Нахождение общего и частного решения, постоянной С. Подставка известных чисел в уравнение. Расчет численности популяции бактерий через 4 часа.

      презентация , добавлен 23.03.2014

      Предмет изучения молекулярной биологии. Требования к решению задач на установление последовательности нуклеотидов в ДНК, иРНК, антикодонов тРНК, специфика вычисления количества водородных связей, длины ДНК и РНК. Биосинтез белка. Энергетический обмен.

      презентация , добавлен 05.05.2014

      Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.

      контрольная работа , добавлен 25.02.2012

      Морфологическая характеристика тетеревиных. Ареал вида, образ жизни, питание, размножение, рост и развитие. Особенности сезонной смены перьевого покрова. Динамика численности тетеревиных. Сходства и различия в биологии изученных видов тетеревиных.

      курсовая работа , добавлен 12.02.2015

      Динамические характеристики популяции: рождаемость, смертность, выживаемость. Пространственное распределение особей, составляющих популяции. Рассмотрение колебания численности популяции как авторегулируемого процесса. Число доступных для жизни мест.

      презентация , добавлен 25.03.2015

      Выявление общего характера распределения и места концентрации кабанов в Северо-Западном Кавказе. Определение численности и плотности, возрастной структуры и половой популяции. Рассмотрение особенностей поведения кабанов на прикормочных площадках.

      дипломная работа , добавлен 18.07.2014

      Методология современной биологии. Философско-методологические проблемы биологии. Этапы трансформации представлений о месте и роли биологии в системе научного познания. Понятие биологической реальности. Роль философской рефлексии в развитии наук о жизни.

      реферат , добавлен 30.01.2010

      Электрофорез как один из наиболее важных методов для разделения и анализа компонентов веществ в химии, биохимии и молекулярной биологии. Электрофорез белков в полиакриламидном и агарозном геле. Оборудование для проведения капиллярного электрофореза.

      реферат , добавлен 31.08.2014

      Исследование биографии и научной деятельности Чарльза Дарвина, основоположника эволюционной биологии. Обоснование гипотезы происхождения человека от обезьяноподобного предка. Основные положения эволюционного учения. Сфера действия естественного отбора.

    В течение последних десятилетий наметился значительный прогресс в количественном (математическом) описании функций различных биосистем на различных уровнях организации жизни: молекулярном, клеточном, органном, организменном, популяционном, биогеоценологическом (экосистемном). Жизнь определяется множеством различных характеристик этих биосистем и процессов, протекающих на соответствующих уровнях организации системы и интегрированных в единое целое в процессе функционирования системы. О моделях, базирующихся на существенных постулатах о принципах функционирования системы, которые описывают и объясняют широкий круг явлений и выражают знание в компактной, формализованной форме, можно говорить, как о теории биосистемы . Построение математических моделей (теорий) биологических систем стало возможным благодаря исключительно интенсивной аналитической работе экспериментаторов: морфологов, биохимиков, физиологов, специалистов по молекулярной биологии и др. В результате этой работы кристаллизованы морфофункциональные схемы различных клеток, в рамках которых упорядоченно в пространстве и во времени протекают различные физико-химические и биохимические процессы, образующие весьма сложные переплетения.

    Вторым очень важным обстоятельством , способствующим привлечению математического аппарата в биологию, является тщательное экспериментальное определение констант скоростей многочисленных внутриклеточных реакций, определяющих функции клетки и соответствующей биосистемы. Без знания таких констант невозможно формально-математическое описание внутриклеточных процессов.

    И наконец, третьим условием , определившим успех математического моделирования в биологии, явилось развитие мощных вычислительных средств в виде персональных компьютеров, суперкомпьютеров и информационных технологий. Это связано с тем, что обычно процессы, контролирующие ту или иную функ­цию клеток или органов, многочисленны, охвачены петлями прямой и обратной связи и, следовательно, описываются сложными системами нелинейных уравнений с большим числом неизвестных. Такие уравнения не решаются аналитически, но могут быть решены численно при помощи компьютера.

    Численные эксперименты на моделях, способные воспроизводить широкий класс явлений в клетках, органах и организме, позволяют оценить правильность предположений, сделанных при построении моделей. Хотя в качестве постулатов моделей используются экспериментальные факты, необходимость некоторых допущений и предположений является важным теоретическим компонентом моделирования. Эти допущения и предположения являются гипотезами , которые могут быть подвергнуты экспериментальной проверке. Таким образом, модели становятся источниками гипотез, притом экспериментально верифицируемых. Эксперимент, направленный на проверку данной гипотезы, может опровергнуть или подтвердить ее и тем самым способствовать уточнению модели.

    Такое взаимодействие моделирования и эксперимента происходит непрерывно, приводя ко все более глубокому и точному пониманию явления:

    • эксперимент уточняет модель,
    • новая модель выдвигает новые гипотезы,
    • эксперимент уточняет новую модель и т. д.

    В настоящее время область математического моделирования живых систем объединяет ряд различных и уже устоявшихся традиционных и более современных дисциплин, названия которых звучат достаточно обще, так что трудно бывает строго разграничить зоны их специфического использования. В настоящее время особенно бурно развиваются специализированные области применения математического моделирования живых систем - математическая физиология, математическая иммунология, математическая эпидемиология, направленные на разработку математических теорий и компьютерных моделей соответствующих систем и процессов.

    Как всякая научная дисциплина, математическая (теоретическая) биология имеет свой предмет, способы, методы и процедуры исследования. В качестве предмета исследований выступают математические (компьютерные) модели биологических процессов, одновременно представляющие собой и объект исследования, и инструмент для исследования собственно биологических объектов. В связи с такой двоякой сущностью биоматематических моделей они подразумевают использование имеющихся и разработку новых способов анализа математических систем (теорий и методов соответствующих разделов математики) с целью изучения свойств самой модели как математического объекта, а также использование модели для воспроизведения и анализа экспериментальных данных, получаемых в биологических экспериментах. При этом в качестве одного из наиболее важных назначений математических моделей (и теоретической биологии в целом) является возможность предсказания биологических явлений и сценариев поведения биосистемы в определенных условиях и их теоретического обоснования до проведения соответствующих биологических экспериментов.

    Основным методом исследования и использования сложных моделей биологических систем является вычислительный компьютерный эксперимент, который требует применения адекватных методов вычислений для соответствующих математических систем, алгоритмов вычислений, технологий разработки и реализации компьютерных программ, хранения и обработки результатов компьютерного моделирования.

    Наконец, в связи с основной целью использования биоматематических моделей для познания законов функционирования биологических систем, все стадии разработки и использования математических моделей предполагают обязательную опору на теорию и практику биологической науки, и в первую очередь на результаты натурных экспериментов.

    Метод описания биологических систем с помощью адекватного математического аппарата. Определение матем. аппарата, адекватно отображающего работу биологических систем, является сложной задачей, связанной с их классификацией. Классификацию биосистем по сложности (логарифму числа состояний) можно провести, пользуясь, напр., шкалой, по которой к простым системам относятся системы, имеющие до тысячи состояний, к сложным - от тысячи до миллиона и к очень сложным - свыше миллиона состояний. Второй важнейшей характеристикой биосистемы является закономерность, выражаемая законом распределения вероятностей состояний. По этому закону можно определить неопределенность ее работы по К. Шеннону и оценку относительной организации. Т. о., биол. системы можно классифицировать по сложности (макс. разнообразию или максимально возможной неопределенности) и относительной организации, т. е. степени организованности (см. Биологических систем организация).

    Классификационная диаграмма биосистем:

    Простые системы;

    Сложные системы;

    Очень сложные системы;

    Вероятностные системы;

    Вероятностно-детерминированные системы;

    Детерминированные системы.

    На рис. приведена классификационная диаграмма биосистем в осях максимально возможной неопределенности характеризующей число состояний системы и определяемой логарифмом числа состояний, и уровня относительной орг-ции - , характеризующего степень организации системы. На диаграмме даны названия соответствующих полос так, что, напр., область под цифрой 8 означает «очень сложные вероятностно-детерминированные биосистемы». Опыт изучения биосистем показывает, что если , вычисленное по гистограмме распределения отклонений изучаемого показателя от его математического ожидания, лежит в пределах от 1,0 до 0,3, то можно считать, что это детерминированная биосистема. К таким системам относятся системы управления внутр. органами, в основном системы гормонального (гуморального) управления. Нейрон, органы внутр. сферы, системы обмена веществ по определенным параметрам тоже могут быть отнесены к детерминированным биосистемам. Матем. модели таких систем строятся на основе физико-хим. соотношений между элементами или органами системы. Моделированию в этом случае подвергается динамика изменения входных, промежуточных и выходных показателей. Таковы, напр., биофизические модели нервной клетки, сердечно-сосудистой системы, системы управления содержанием сахара в крови и другие. Матем. аппаратом, адекватно описывающим поведение таких детерминированных биосистем, является теория дифф. и интегральных ур-ний. На основании матем. моделей биосистем можно, используя методы автоматического управления теории, успешно решать задачи дифф. диагностики и оптимизации лечения. Область моделирования детерминированных биосистем развита наиболее полно.

    Если организованность биосистем по отношению к изучаемому показателю (или системе показателей) лежит в пределах 0,3 - 0,1, то системы можно считать вероятностно-детерминированными. К ним относятся системы управления внутр. органами с явно выраженной компонентой нервной регуляции (напр., система управления частотой пульса), а также системы гормональной регуляции в случае патологии. В качестве адекватного матем. аппарата может служить представление динамики изменения показателей дифф. ур-ниями с коэфф., подчиняющимися определенным законам распределения. Моделирование таких биосистем развито сравнительно слабо, хотя и представляет значительный интерес для целей кибернетики медицинской.

    Вероятностные биосистемы характеризуются значением организованности R в пределах от 0,1 до 0. К ним относятся системы, определяющие взаимодействие анализаторов и поведенческие реакции, включая процессы обучения при простых условно-рефлекторных актах и сложных взаимосвязях между сигналами окружающей среды и реакциями организма. Адекватным матем. аппаратом

    для моделирования таких биосистем является теория детерминированных и случайных автоматов, взаимодействующих с детерминированными и случайными средами, случайных процессов теория.

    Матем. моделирование биосистем включает предварительную статистическую обработку экспериментальных результатов (см. Биологических исследований математические методы), изучение сложности и организованности биосистем, выбор адекватной матем. модели и определение числовых значений параметров матем. модели по экспериментальным данным (см. Кибернетика биологическая). Последняя задача в общем случае является очень сложной. Для детерминированных биосистем, модели которых могут быть представлены линейными дифф. ур-ниями, определение наилучших параметров модели (коэфф. дифф. ур-ния) может быть проведено методом спуска (см. Градиентный метод) в пространстве параметров модели, оценивая по интегралу от квадрата ошибки. В этом случае требуется применить процедуру спуска по параметрам для минимизации функционала

    где Т - период, характерное время для показателя , у - экспериментальная кривая изменения показателя биосистемы, у - решение матем. модели. Если необходимо получить наилучшее (в смысле интеграла от квадрата ошибки) приближение матем. модели к работе биосистемы по нескольким показателям по различным внутренним состояниям биосистемы или для различных характерных внешних воздействий, то можно, применяя метод спуска в пространстве параметров модели, минимизировать сумму частных функционалов . При использовании такой процедуры выбора параметров матем. модели можно повысить вероятность получения единственного набора коэфф. модели, отвечающих принятой структуре. С помощью Б. с. м. м. желательно получить не только количественные характеристики работы биосистем, ее элементов и характеристики взаимосвязи элементов, но и выявить критерии работы баосистем, установить определенные общие принципы их функционирования. Лит.: Глушков В. М. Введение в кибернетику. К., 1964 [библиогр. с. 319-322]; Моделирование в биологии и медицине, в. 1-3. К., 1965-68; Буш Р., Мостеллер Ф. Стохастические модели обучаемости. Пер. с англ. М., 1962. Ю. Г. Антомонов.

    Курс лекций «Математические модели в биологии»

    читается автором для студентов 2-ого года обучения бакалавриата Биологического факультета МГУ имени М. В. Ломоносова. Параллельно с лекциями проходят семинары (практические занятия), в ходе которых студенты закрепляют полученные на лекциях знания и знакомятся с программным обеспечением, используемым для анализа математических моделей и проведения вычислительных экспериментов. После прохождения курса студенты сдают экзамен . Курс включает 14 лекций по 2 академических часа.

    • Учебник Ризниченко Г. Ю. Лекции по математическим моделям в биологии (изд. 2-е, испр. и дополн.) Издательство РХД, 2011 г. 560 стр. ISBN 978-5-93972-847-8. Предыдущее издание (значительно более краткое!) находится в свободном доступе в сети Интернет по ссылке http://www.library.biophys.msu.ru/LectMB/
    • Учебник Мятлев В.Д., Панченко Л.А., Ризниченко Г.Ю., Терёхин А.Т. Теория вероятностей и математическая статистика. Математические модели (изд. 2-е, испр. и дополн.) М.: Издательство Юрайт, 2018. - 321 с. - (Серия: Университеты России). - ISBN 978-5-534-01698-7.
    • Учебное пособие Плюснина Т.Ю., Фурсова П. В., Тёрлова Л. Д., Ризниченко Г. Ю. Математические модели в биологии (Изд. 2-e доп. Учебное пособие. М.-Ижевск: НИЦ: «Регулярная и хаотическая динамика», 2014. 136 с. ISBN: 978-5-4344-0224-8) - электронная версия
    • Задать вопрос преподавателям Вы можете на web -форуме
    • Ответы на лекционные вопросы Вы можете отправить преподавателю с помощью web -форума . Пожалуйста, прочитайте правила форума

    Лекции будут прочитаны в Большой биологической аудитории (ББА, 2 этаж) Биологического факультета МГУ с 7 сентября по 21 декабря 2018 года еженедельно по пятницам с 13 40 .

    Те, кто пропустил по болезни лекционную контрольную или электронный тест, могут их написать 24 декабря 2018 года в 15.35 и 17.10.

    Часть 1. Введение. Понятие модели. Объекты, цели и методы моделирования. Модели в разных науках. Компьютерные и математические модели. История первых моделей в биологии. Современная классификация моделей биологических процессов. Регрессионные, имитационные, качественные модели. Принципы имитационного моделирования и примеры моделей. Специфика моделирования живых систем.

    • Программа: Интеграция данных и знаний. Цели моделирования. Базовые понятия
    • Учебник: Введение (из 1-го издания)
    • Введение (из 2-го издания)
    • Презентация (загрузить PDF)

    Часть 2. . Модели, приводящие к одному дифференциальному уравнению. Понятие решения одного автономного дифференциального уравнения. Стационарное состояние (состояние равновесия). Устойчивость состояния равновесия. Методы оценки устойчивости.

    • Программа:
    • Учебник: Модели биологических систем, описываемые одним дифференциальным уравнением первого порядка
    • Презентация (загрузить )

    Непрерывные модели: экспоненциальный рост, логистический рост, модели с наименьшей критической численностью. Модель роста человечества. Модели с неперекрывающимися поколениями. Дискретное логистическое уравнение. Диаграмма и лестница Ламерея. Типы решений при разных значениях параметра: монотонные и затухающие решения, циклы, квазистохастическое поведение, вспышки численности. Матричные модели популяций. Влияние запаздывания. Вероятностные модели популяций.

    • Программа: Модели, описываемые автономным дифференциальным уравнением
    • Учебник: Модели биологических систем, описываемые одним дифференциальным уравнением первого порядка
    • Учебник: Модели роста популяций
    • Презентация (загрузить PDF)

    21 сентября. Лекция 3 . Модели роста популяций.

    Часть 1. Модели роста популяций. Матричные модели популяций. Влияние запаздывания. Вероятностные модели популяций.

    Часть 2. Модели, описываемые системами двух автономных дифференциальных уравнений. Фазовая плоскость. Фазовый портрет. Метод изоклин. Главные изоклины. Устойчивость стационарного состояния. Линейные системы. Типы особых точек: узел, седло, фокус, центр. Пример: химические реакции первого порядка.

    • Программа: Модели, описываемые системами двух автономных дифференциальных уравнений
    • Учебник: Модели, описываемые системами двух автономных дифференциальных уравнений
    • Учебник: Исследование устойчивости стационарных состояний нелинейных систем второго порядка
    • Презентация: Матричные модели популяций (загрузить PDF)
    • Презентация: Модели, описываемые системами двух автономных дифференциальных уравнений (загрузить PDF)

    28 сентября. Лекция 4 . Исследование устойчивости стационарных состояний нелинейных систем второго порядка

    Триггер. Примеры систем с двумя устойчивыми стационарными состояниями. Силовое и параметрическое переключение триггера. Эволюция. Отбор одного из двух и нескольких равноправных видов. Конкуренция двух видов в случае неограниченного и ограниченного роста. Генетический триггер Жакоба и Моно. Бифуркации динамических систем. Типы бифуркаций. Бифуркационные диаграммы и фазопараметрические портреты. Катастрофы.

    • Программа: Мультистационарные системы
    • Учебник: Мультистационарные системы
    • Учебник: Проблема быстрых и медленных переменных. Теорема Тихонова. Типы бифуркаций. Катастрофы
    • Презентация: Устойчивость и асимптотическая устойчивость (загрузить PDF)
    • Презентация: Биологические триггеры (загрузить PDF)
    • Материалы по теории катастроф:
      • Арнольд В.И. Теория катастроф // Наука и жизнь, 1989, № 10
      • Арнольд В.И. Теория катастроф // Динамические системы – 5, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 5, ВИНИТИ, М., 1986, 219–277
      • Арнольд В.И. Теория катастроф . М., Наука, 1990 - 128 с.

    Понятие автоколебаний. Изображение поведения автоколебательной системы на фазовой плоскости. Предельные циклы. Условия существования предельных циклов. Рождение предельного цикла. Бифуркация Андронова - Хопфа. Мягкое и жесткое возбуждение колебаний. Модель Брюсселятор. Примеры автоколебательных моделей процессов в живых системах. Колебания в темновых процессах фотосинтеза. Автоколебания в модели гликолиза. Внутриклеточные колебания концентрации кальция.

    • Программа:
    • Учебник: Колебания в биологических системах
    • Презентация (загрузить PDF)

    Основные понятия теории динамических систем. Предельные множества. Аттракторы. Странные аттракторы. Динамический хаос. Линейный анализ устойчивости траекторий. Диссипативные системы. Устойчивость хаотических решений. Размерность странных аттракторов.

    Стационарные состояния и динамические режимы в сообществе из трех видов. Динамический хаос в моделях взаимодействия видов. Трофические системы с фиксированным количеством вещества. Модель системы четырех биологических видов.

    Фракталы и фрактальная размерность. Кривая Коха. Треугольник и салфетка Серпинского. Канторово множество. Канторов стержень, чертова лестница. Примеры фрактальных множеств в живых системах. Формирование крон деревьев. Альвеолы легких. Мембраны митохондрий.

    • Программа: Квазистохастические процессы. Динамический хаос
    • Учебник:
    • Презентация (загрузить PDF)

    2 ноября. Лекция 9 . Модели взаимодействия двух видов. Моделирование микробных популяций

    Гипотезы Вольтерра. Аналогии с химической кинетикой. Вольтерровские модели взаимодействий. Классификация типов взаимодействий. Конкуренция. Хищник-жертва. Обобщенные модели взаимодействия видов. Модель Колмогорова. Модель взаимодействия двух видов насекомых МакАртура. Параметрический и фазовые портреты системы Базыкина.

    • Программа: Модели взаимодействия видов
    • Программа: Модели в микробиологии
    • Учебник: Модели взаимодействия двух видов
    • Учебник: Динамический хаос. Модели биологических сообществ
    • Презентация (загрузить PDF)

    Уравнение реакция-диффузия. Почему возникают периодические структуры и волны. Активные кинетические среды в живых системах. Проблема формообразования. Распространение волн возбуждения. Пространственные структуры и автоволновые процессы в химических и биохимических реакциях.

    Уравнение диффузии. Начальные и граничные условия. Решение уравнения диффузии. Решение однородного уравнения диффузии с нулевыми граничными условиями. Метод разделения переменных. Собственные значения и собственные функции задачи Штурма-Лиувилля. Решение неоднородного уравнения с нулевыми начальными условиями. Решение общей краевой задачи. Линейный анализ устойчивости гомогенных стационарных решений одного уравнения типа реакция-диффузия.

    • Программа:
    • Учебник:
    • Учебник:
    • Учебник:
    • Презентация (загрузить PDF)

    16 ноября. Лекция 11 . Распределенные биологические системы. Распределенные триггеры и морфогенез. Модели раскраски шкур животных

    Устойчивость однородных стационарных решений системы двух уравнений типа реакция-диффузия. Диссипативные структуры. Линейный анализ устойчивости гомогенного стационарного состояния. Зависимость вида неустойчивости от волнового числа. Неустойчивость Тьюринга. Линейный анализ устойчивости гомогенного стационарного состояния распределенного Брюсселятора. Диссипативные структуры вблизи порога неустойчивости. Локализованные диссипативные структуры. Линейный анализ системы реакция-электродиффузия. Типы пространственно-временных режимов.

    Распределенные триггеры и морфогенез. Модели раскраски шкур животных. Дифференциация и морфогенез. Модель генетического триггера с диффузией (Чернавский и др.). Исследование устойчивости гомогенного стационарного состояния. Генетический триггер с учетом диффузии субстратов. Модель гидры Гирера-Майнхардта. Моделирование раскраски шкур животных. Модели агрегации амеб.

    • Программа: Живые системы и активные кинетические среды
    • Учебник: Распределенные биологические системы. Уравнение реакция-диффузия
    • Учебник: Решение уравнения диффузии. Устойчивость гомогенных стационарных состояний
    • Учебник: Распространение концентрационной волны в системах с диффузией
    • Презентация (загрузить PDF)

    23 ноября. Лекция 12 . Распространение импульсов, фронтов и волн. Модели распространения нервного импульса. Автоволновые процессы и сердечные аритмии

    Распространение импульсов, фронтов и волн. Модель распространения фронта волны Петровского-Колмогорова-Пискунова-Фишера. Взаимодействие процессов размножения и диффузии. Локальные функции размножения. Автомодельная переменная. Распространение амброзиевого листоеда.

    Модели распространения нервного импульса. Автоволновые процессы и сердечные аритмии. Распространение нервного импульса. Опыты и модель Ходчкина-Хаксли. Редуцированная модель ФитцХью-Нагумо. Возбудимый элемент локальной системы. Подпороговое и надпороговое возбуждение. Бегущие импульсы. Детальные модели кардиоцитов. Аксиоматические модели возбудимой среды. Автоволновые процессы и сердечные аритмии.

    • Программа: Живые системы и активные кинетические среды
    • Программа: Модели взаимодействия видов
    • Программа: Модели в микробиологии
    • Учебник: Распределенные биологические системы. Уравнение реакция-диффузия
    • Учебник: Решение уравнения диффузии. Устойчивость гомогенных стационарных состояний
    • Учебник:


 


Читайте:



Праздник непослушания (Повесть-сказка) Праздник непослушания герои сказки

Праздник непослушания (Повесть-сказка) Праздник непослушания герои сказки

Михалков Сергей Владимирович Праздник Непослушания Сергей Владимирович Михалков Праздник Непослушания Повесть-сказка "Праздник Непослушания" -...

Почвенный покров южной америки

Почвенный покров южной америки

Страница 1 В отличие от Северной Америки, где изменения в растительном покрове зависят в значительной степени от изменений температурных условий,...

Расправленные крылья - музыкальная пауза Порядок описания Московской операции

Расправленные крылья - музыкальная пауза Порядок описания Московской операции

Ситуация на фронте весной 1942 года, планы сторон, немецкое наступление летом 1942 года, начало Сталинградской битвы, немецкий оккупационный режим,...

Cобытия Второй мировой войны

Cобытия Второй мировой войны

Вторая мировая война считается самой крупной в истории человечества. Она началась и закончилась 2 сентября 1945 года. За это время в ней приняло...

feed-image RSS