Главная - Режиссура
Магнитные поля соленоида и тороида. Магнитное поле соленоида

Особый интерес представляет магнитное поле внутри соленоида, длина которого значительно превосходит его диаметр. Внутри такого соленоида магнитная индукция имеет повсюду одно и то же направление, параллельное оси соленоида, и значит, линии поля параллельны между собой.

Измеряя каким-нибудь способом магнитную индукцию в разных точках внутри соленоида, мы можем убедиться в том, что если витки соленоида расположены равномерно, то индукция магнитного поля внутри соленоида имеет во всех точках не только одинаковое направление, но и одинаковое числовое значение. Итак, поле внутри длинного равномерно навитого соленоида однородно. В дальнейшем, говоря о поле внутри соленоида, мы всегда будем иметь в виду подобные «длинные» равномерные соленоиды и не будем обращать внимания на отступления от однородности поля в областях, близких к концам соленоида.

Подобные измерения, выполненные с разными соленоидами при различной силе тока в них, показали, что магнитная индукция поля внутри длинного соленоида пропорциональна силе тока и числу витков, приходящихся на единицу длины соленоида, т. е. величине , где – полное число витков соленоида, – его длина. Таким образом,

где – коэффициент пропорциональности, называемый магнитной постоянной (ср. с электрической постоянной , § 11). Числовое значение магнитной постоянной

Впоследствии (§ 157) выяснится, что единица, в которой выражена величина , может быть названа «генри на метр», где генри (Гн) – единица индуктивности. Следовательно, можно написать, что

Гн/м. (126.2)

В силу своей простоты поле соленоида используется в качестве эталонного поля.

Для характеристики магнитного поля, кроме магнитной индукции , используют также векторную величину , называемую напряженностью магнитного поля. В случае поля в вакууме величины и просто пропорциональны друг другу:

так что введение величины не вносит ничего нового. Однако в случае поля в веществе связь с имеет вид

где – безразмерная характеристика вещества, называемая относительной магнитной проницаемостью или просто магнитной проницаемостью вещества. При рассмотрении магнитных полей в веществе, например в железе, величина оказывается полезной. Подробнее об этом идет речь в § 144.

Из формул (126.1) и (126.3) следует, что в случае, когда соленоид находится в вакууме, напряженность магнитного поля

т. е., как говорят, равна числу ампер-витков на метр.

С помощью измерений магнитной индукции поля, создаваемого током, текущим по очень длинному тонкому прямолинейному проводнику, было установлено, что

где – сила тока в проводнике, – расстояние от проводника.

Согласно формуле (126.3) напряженность поля, создаваемого прямолинейным проводником, находящимся в вакууме, равна

В соответствии с формулой (126.7) единица напряженности магнитного поля носит название ампер на метр (А/м). Один ампер на метр есть напряженность магнитного поля на расстоянии одного метра от тонкого прямолинейного бесконечно длинного проводника, по которому течет ток силой ампер.

126.1. Магнитная индукция поля внутри соленоида равна 0,03 Тл. Какой силы ток проходит в соленоиде, если длина его равна 30 см, а число витков равно 120?

126.2. Как изменится магнитная индукция поля внутри соленоида из предыдущей задачи, если соленоид растянуть до 40 см или сжать его до 10 см? Что произойдет, если сложить соленоид пополам так, чтобы витки одной его половины легли между витками второй половины?

126.3. По соленоиду длины 20 см, состоящему из 60 витков диаметра 15 см, идет ток. Что произойдет с магнитным полем внутри соленоида, если уменьшить диаметр его витков до 5 см, сохранив прежнюю длину соленоида и использовав тот же самый кусок провода? Каким способом можно получить прежнюю магнитную индукцию поля, сохранив неизменными длину и диаметр витков соленоида?

126.4. Внутри соленоида длины 8 см, состоящего из 40 витков, расположен другой соленоид с числом витков на 1 см длины соленоида, равным 10. Через оба соленоида проходит одинаковый ток 2 А. Какова магнитная индукция поля внутри обоих соленоидов, если северные концы их обращены: а) в одну сторону; б) в противоположные стороны?

126.5. Имеются три соленоида длины 30 см, 5 см и 24 см с числом витков 1500, 1000 и 600 соответственно. По первому соленоиду идет ток 1 А. Какие токи должны идти по второму и третьему соленоидам, чтобы магнитная индукция внутри всех трех соленоидов была одной и той же?

126.6. Вычислите магнитную индукцию поля в каждом из соленоидов задачи 126.5.

126.7. В соленоиде длины 10 см нужно получить магнитное поле с напряженностью, равной 5000 А/м. При этом ток в соленоиде должен быть равен 5 А. Из скольких витков должен состоять соленоид?

126.8. Какова магнитная индукция поля внутри соленоида, длина которого равна 20 см, а полное число витков равно 500, при токе 0,1 А? Как изменится магнитная индукция, если соленоид будет растянут до 50 см, а ток уменьшен до 10 мА?

Рассчитаем, применяя теорему о циркуляции, индукцию магнитного поля внутри соленоида. Рассмотрим соленоид длиной l , имеющий N витков, по которому течет ток (рис. 175). Длину соленоида считаем во много раз больше, чем диаметр его витков, т. е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида (см. рис. 162, б) показывает, что внутри соленоида поле является однородным, вне соленоида - неоднородным и очень слабым.

На рис. 175 представлены линии магнитной индукции внутри и вне соленоида. Чем соленоид длиннее,тем меньше магнитная индукция вне его. Поэтому приближенно можно считать, что поле бесконечно длинного соленоида сосредоточено целиком внутри него, а полем вне соленоида можно пренебречь.

Для нахождения магнитной индукции В выберем замкнутый прямоугольный кон­тур ABCDA , как показано на рис. 175. Циркуляция вектора В по замкнутому контуру ABCDA , охватывающему все N витков, согласно (118.1), равна

Интеграл по ABCDA можно представить в виде четырех интегралов: по АВ, ВС, CD и DA . На участках АВ и CD контур перпендикулярен линиям магнитной индукции и B l = 0. На участке вне соленоида B =0. На участке DA циркуляция вектора В равна Вl (контур совпадает с линией магнитной индукции); следовательно,

(119.1)

Из (119.1) приходим к выражению для магнитной индукции поля внутри соленоида (в вакууме):

Получили, что поле внутри соленоида однородно (краевыми эффектами в областях, прилегающих к торцам соленоида, при расчетах пренебрегают). Однако отметим, что вывод этой формулы не совсем корректен (линии магнитной индукции замкнуты, и интеграл по внешнему участку магнитного поля строго нулю не равен). Корректно рассчитать поле внутри соленоида можно, применяя закон Био - Савара - Лапласа; в результате получается та же формула (119.2).

Важное значение для практики имеет также магнитное поле тороида - кольцевой катушки, витки которой намотаны на сердечник, имеющий форму тора (рис. 176). Магнитное поле, как показывает опыт, сосредоточено внутри тороида, вне его поле отсутствует.

Линии магнитной индукции в данном случае, как следует из соображений симмет­рии, есть окружности, центры которых расположены по оси тороида. В качестве контура выберем одну такую окружность радиуса r . Тогда, по теореме о циркуляции (118.1), B × 2p r =m 0 NI , откуда следует, что магнитная индукция внутри тороида (в вакууме)

где N - число витков тороида.

Если контур проходит вне тороида, то токов он не охватывает и B × 2p r = 0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).

Без сомнения, всем в детстве нравилось играться с магнитом. Раздобыть постоянный магнит было очень просто: для этого нужно было найти старую колонку, извлечь из нее звуковоспроизводящий динамик и, после несложных «вандальных действий», достать из нее кольцевой магнит. Неудивительно, что многие проводили опыт с металлическим опилками и листом бумаги. Опилки располагались полосами - вдоль линий напряженности поля.

В электротехнике намного большее распространение получили не постоянные, а электромагниты. Из курса физики известно, что при протекании электрического тока по проводнику, вокруг последнего создается магнитное поле, величина которого непосредственно связана с действующим значением тока.

Сомневающиеся могут повторить простейший опыт Эрстеда, когда рядом с прямолинейным проводником с током размещается компас. При этом стрелка будет отклоняться от географического северного полюса планеты (перпендикулярно проводу). Направление отклонения можно определить при помощи правила правой руки: размещаем правую руку параллельно проводнику ладонью вниз. 4 пальца должны указывать Тогда отогнутый на 90 градусов большой палец укажет сторону отклонения стрелки. Вокруг прямого провода магнитное поле имеет вид цилиндра с проводом посередине. А вот линии напряженности образуют кольца.

В электротехнике указанные используются, прежде всего, в катушках. Часто можно услышать выражение «магнитное поле соленоида». Представим себе обыкновенный гвоздь и тонкий провод в изоляции. Равномерно наматывая провод на гвоздь, получаем соленоид. В данном случае гвоздь влияет на магнитное поле соленоида, но это тема совершенно другой статьи. Важно понять, что именно понимают под термином. Если теперь подключить катушку к то вокруг нее возникнет магнитное поле.

Поля соленоида прямопропорциональна значению индуктивности и квадрату проходящего по виткам тока. В свою очередь, индуктивность зависит от квадрата числа витков. При этом нужно учитывать конструкцию обмотки: это может быть простой случай с одним слоем витков, а также многослойная структура, где направление тока в витках оказывает корректирующее действие на суммарную энергию. Соленоиды используются в схемах трамваев, режущих механизмов, контакторов и пр.

Магнитное поле соленоида представляет собой кольца, выходящие из одного конца обмотки и входящие в другой. Внутри катушки силовые линии не прерываются, а распространяются в диэлектрической среде или по проводящему сердечнику. Следствие: поле соленоида полярно. Линии выходят из магнитного северного полюса, а возвращаются в южный. Нетрудно догадаться, что магнитное поле соленоида зависит от полярности источника тока, подключенного к концам провода. Магнитные свойства соленоида практически совпадают с Это позволяет использовать соленоид в качестве электромагнита. На производстве можно увидеть краны, у которых вместо крюка размещен диск электромагнита. Это «большой брат» соленоида - обмотка на сердечнике. Особенность всех электромагнитов в том, что магнитные свойства существуют лишь при протекании тока по виткам.

Кроме соленоидов часто используются тороиды. Это те же самые витки провода, но намотанные на магнитопроводе круглой формы. Соответственно, магнитное поле соленоида и тороида различны. Главная особенность в том, что силовые линии распространяются по основе-магнитопроводу внутри самой катушки, а не вне ее, как в случае соленоида. Все это свидетельствует о более высоком КПД катушек на кольцевом магнитопроводящем материале. Следствие: надежны и обладают меньшими потерями, чем их привычные собратья.

Приборы и принадлежности: лабораторная установка с соленоидом, источник питания, милливольтметр, амперметр.

Краткая теория

Соленоидом называется цилиндрическая катушка, содержащая большое, число витков провода, по которому идет ток. Если шаг вин­товой линии проводника, образующего катушку, мал, то каждый ви­ток с током можно рассматривать как отдельный круговой ток, а соленоид - как систему последовательно соединенных круговых токов одинакового радиуса, имеющих общую ось.

Магнитное поле внутри соленоида можно представить как сумму магнитных полей, создаваемых каждым витком. Вектор индукции маг­нитного поля внутри соленоида перпендикулярен плоскости витков, т.е. направлен по оси соленоида и образует с направлением кольце­вых токов витков правовинтовую систему. Примерная картина силовых линий магнитного поля соленоида показана на рис. 1. Силовые линии магнитного поля замкнуты.

На рис, 2 показано сечение соленоида длиной L и с числом витков N и радиусом поперечного сечения R. Кружки с точками обозначают сечения витков катушки, по которым идет ток I , на­правленный от чертежа на нас, а кружки с крестиками - сечения вит­ков, в которых ток направлен за чертеж. Число витков на единицу длины соленоида обозначим .

Индукция магнитного поля в точке А, расположенной на оси соленоида, определяется путем интегрирования магнитных полей, со­здаваемых каждым витком, и равна

, (1)

где и - углы, образуемые с осью соленоида радиус-векто­рами и , проведенными из точки А к крайним виткам солено­ида, -магнитная проницаемость среды, магнитная постоянная.

Таким образом, магнитная индукция В прямо пропорциональна си­ле тока, магнитной проницаемости среды, заполняющей соленоид, и числу витков на единицу длины. Магнитная индукция также зависит от положения точки А относительно концов соленоида. Рассмотрим нес­колько частных случаев:

1. Пусть точка А находится в центре соленоида, тогда , и . Если соленоид достаточно длинный, то и (2)

2. Пусть точка A находится в центре крайнего витка, тогда , и . Если солено­ид достаточно длинный, то , и (3)

Из формул (2) и (3) видно, что магнитная индукция соленоида на его краю вдвое меньше по сравнению с ее величиной в центре.

3. Если длина соленоида во много раз больше радиуса его витков
("бесконечно" длинный соленоид), то для всех точек, лежащих внутри
соленоида на его оси, можно положить . Тогда
поле можно считать в центральной части соленоида однородным и рассчитывать его по формуле

Однородность магнитного поля нарушается вблизи краев соленоида. В этом случае индукцию можно определять по формуле


где k - коэффициент, учитывающий неоднородность поля.

Экспериментальное изучение магнитного поля соленоида в данной работе осуществляется с помощью специального зонда - маленькой катушки, укрепленной внутри штока с масштабной линейкой. Ось катуш­ки совпадает с осью соленоида, катушка подключается к милливольт­метру переменного тока, входное сопротивление которого много боль­ше сопротивления катушки-зонда. Если через соленоид идет перемен­ный ток стандартной частоты ( =50 Гц), то внутри соленоида и на его краях индукция переменного магнитного поля изменяется по закону (см. (5)):

Амплитуда магнитной индукции в этой формуле зависит от положения точки внутри соленоида. Если поместить в соленоид катуш­ку-зонд, то в соответствии с законом электромагнитной индукции, в ней возникает ЭДС индукции:

, (6)

где N 1 - число витков в катушке, S - площадь поперечного сече­ния катушки, Ф - магнитный поток ( , т.к. ось катушки совпадает с осью соленоида и, следовательно, вектор магнитной ин­дукции перпендикулярен плоскости поперечного сечения катушки.).

Так как величина индукции B изменяется по закону , , то из (6) получается формула для расчета ЭДС:

Из выражения (7) видно, что амплитуда ЭДС зависит от . Таким образом, измеряя амплитуду ЭДС, можно определить :

Коэффициент k учитывающий неоднородность магнитного поля соленоида на краях, можно о определить., по формуле. (5), зная и :

(9)

где - амплитуда переменного тока, идущего через соленоид.

Из формул (7) и (9) следует, что амплитуда ЭДС индукции прямо пропорциональна амплитуде переменного тока :

Включенные в цепь переменного тока амперметр и милливольт­метр измеряют действующие значения тока и ЭДС , которые связаны с амплитудами и соотношениями:

Для действующих значений тока и ЭДС формула (10) имеет вид

(11)

Из формулы (11) следует, что отношение пропорциональ­но коэффициенту K неоднородности индукции магнитного поля в точке соленоида, где проводятся измерения

(12)

где А - коэффициент пропорциональности.

В данной работе требуется выполнить два задания: 1) опреде­лить распределение индукции вдоль оси соленоида при некотором постоянном значении тока; 2) определить значение коэффициента к.

Техника безопасности:

1. Не подключают/ самостоятельно источник питания и милливольтметр к сети 220 В.

2. Не производить переключения цепей, находящихся под напряжением.

Не прикасаться к неизолированным частям цепей.

3. Не оставлять без присмотра включенную схему.

Порядок выполнения работы

Задание № 1. Исследование распределения индукции магнитного поля вдоль оси соленоида.

1. Собрать измерительную цепь по схеме, приведенной на рис. 3. Для этого в цепь соленоида включить источник питания и амперметр, а к выводам катушки - зонда - милливольтметр (для измерения ) В данной установке катушка-зонд имеет следующие параметры: =200 витков, S=2*10 -4 м 2 , частота переменного тока = 50 Гц, Число витков на единицу длины соленоида n = 2400 1/м

1- лабораторный стенд Z - шток «

2- катушка-зонд

3- соленоид
5- амперметр

6- источник питания с регулятором выход­ного напряжения (тока), 7- милливольтметр.

2. Установить шток с масштабной линейкой так, чтобы катушка-зонд оказалась примерно в середине соленоида.

3.Включить источник питания соленоида и установить ток соленоида (по амперметру), равный =25мА. Включить милливольтметр и после прогрева (5 мин) снять показания .

4.Перемещая шток с масштабной линейной, измерить при помощи
милливольтметра действующее значение ЭДС индукции через каждый
сантиметр положения линейки. По формуле (8) вычислить .
Результаты измерений и расчетов занести в таблицу 1 (учтите, что ).

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны в одном направлении (рис. 223). Магнитное поле соленоида представляет собой результат сложения полей, создаваемых несколькими круговыми токами, расположенными рядом и имеющими общую ось.

На рис. 223 показаны четыре витка соленоида с током Для наглядности полувитки, расположенные за плоскостью листа, изображены прерывистыми линиями. На этом рисунке видно, что внутри соленоида силовые линии каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположные направления Поэтому при достаточно плотной намотке соленоида противоположно направленные участки силовых линий соседних витков взаимно

уничтожатся, а одинаково направленные участки сольются в общую замкнутую силовую линию, проходящую внутри всего соленоида и охватывающую его снаружи.

Детальное изучение магнитного поля длинного соленоида, проведенное с помощью железных опилок, показывает, что это поле имеет вид, изображенный на рис. 224. Внутри соленоида поле оказывается практически однородным, вне соленоида - неоднородным и сравнительно слабым (густота силовых линий здесь весьма мала).

Внешнее поле соленоида подобно полю стержневого магнита (см. рис. 212). Как и магнит, соленоид имеет северный С и южный полюсы и нейтральную зону.

Напряженность магнитного поля внутри длинного соленоида рассчитывается по формуле

где I - длина соленоида, число его витков, сила тока в нем. Произведение принято называть числом ампер-витков

Формула (18) является частным случаем выражения напряженности поля внутри соленоида конечной длины, которое в свою очередь выводится следующим образом.

На рис. 225 изображен продольный разрез соленоида вертикальной плоскостью, проходящей через его ось. Длина соленоида I, радиус его витков число витков сила тока, идущего по соленоиду,

Рассматривая соленоид как совокупность вплотную приложенных друг к другу витков (круговых токов имеющих общую ось, определим напряженность магнитного поля в точке А на оси соленоида как сумму напряженностей от всех его витков. Для этого выделим малый участок длины соленоида.

В нем содержится витков. Согласно формуле (17), напряженность поля одного витка Поэтому напряженность поля от участка будет равна

Из рис. 225 видно, что Тогда Подставляя эти выражения в

формулу (19) и производя сокращения, получим

Интегрируя последнее выражение в пределах от до найдем полную напряженность поля в точке А:



 


Читайте:



Праздник непослушания (Повесть-сказка) Праздник непослушания герои сказки

Праздник непослушания (Повесть-сказка) Праздник непослушания герои сказки

Михалков Сергей Владимирович Праздник Непослушания Сергей Владимирович Михалков Праздник Непослушания Повесть-сказка "Праздник Непослушания" -...

Почвенный покров южной америки

Почвенный покров южной америки

Страница 1 В отличие от Северной Америки, где изменения в растительном покрове зависят в значительной степени от изменений температурных условий,...

Расправленные крылья - музыкальная пауза Порядок описания Московской операции

Расправленные крылья - музыкальная пауза Порядок описания Московской операции

Ситуация на фронте весной 1942 года, планы сторон, немецкое наступление летом 1942 года, начало Сталинградской битвы, немецкий оккупационный режим,...

Cобытия Второй мировой войны

Cобытия Второй мировой войны

Вторая мировая война считается самой крупной в истории человечества. Она началась и закончилась 2 сентября 1945 года. За это время в ней приняло...

feed-image RSS