Главная - Память
Картины ручная работа на стену. Как сделать модульные картины своими руками: мастер-класс и технология

Если задуматься о том, как же работают виртуальные сети, то в голову приходит Мысль, что все дело не в отправляющей машине, а в самом кадре ВЛВС. Если бы был какой-нибудь способ идентифицировать ВЛВС по заголовку кадра, отпала бы необходимость просмотра его содержимого. По крайней мере, в новых сетях tHna 802.11 или 802.16 вполне можно было бы просто добавить специальное поле заголовка. Вообще-то Идентификатор кадра в стандарте 802.16 -- это как раз нечто в этом духе. Но что делать с Ethernet -- доминирующей сетью, у которой нет никаких «запасных» полей, которые можно было бы отдать под идентификатор виртуальной сети? Комитет IEEE 802 озаботился этим вопросом в 1995 году. После долгих дискуссий было сделано невозможное -- изменен формат заголовка кадра Ethernet!? Новый формат было опубликован под именем 802.1Q, в 1998 году. В заголовок кадра был вставлен флаг ВЛВС, который мы сейчас вкратце рассмотрим. Понятно, что внесение изменений в нечто уже устоявшееся, такое как Ethernet, должно быть произведено каким-то нетривиальным образом. Встают, например, следующие вопросы:

  • 1. И что, теперь надо будет выбросить на помойку несколько миллионов уже существующих сетевых карт Ethernet?
  • 2. Если нет, то кто будет заниматься генерированием новых полей кадров?
  • 3. Что произойдет с кадрами, которые уже имеют максимальный размер?

Конечно, комитет 802 тоже был озабочен этими вопросами, и решение, несмотря ни на что, было найдено.

Идея состоит в том, что на самом деле поля ВЛВС реально используются только мостами да коммутаторами, а не машинами пользователей. Так, скажем, сеть не очень-то волнует их наличие в каналах, идущих от оконечных станций, до тех пор, пока кадры не доходят до мостов или коммутаторов. Таким образом, чтобы была возможна работа с виртуальными сетями, про их существование должны знать мосты и коммутаторы, но это требование и так понятно. Теперь же мы выставляем еще одно требование: они должны знать про существование 802.1Q. Уже выпускается соответствующее оборудование. Что касается старых сетевых, карт Ethernet, то выкидывать их не приходится. Комитет 802.3 никак не мог заставить людей изменить поле Тип на поле Длина. Вы можете себе представить, какова была бы реакция на заявление о том, что все существующие карты Ethernet можно выбросить? Тем не менее, на рынке появляются новые модели, и есть надежда, что они теперь будут 802.1Ј)-совместимыми и смогут корректно заполнять поля идентификации виртуальных сетей.

Если отправитель не генерирует поле признака виртуальной сети, то кто же этим занимается? Ответ таков: первый встретившийся на пути мост или коммутатор, обрабатывающий кадры виртуальных сетей, вставляет это поле, а последний -- вырезает его. Но как он узнает, в какую из виртуальных сетей передать? локальная сеть маршрутизатор трафик

Для этого первое устройство, которое вставляет поле ВЛВС, может присвоить номер виртуальной сети порту, проанализировать МАС-адрес или (не дай Бог, конечно) подсмотреть содержимое поля данных. Пока все не перейдут на Ethernet-карты, совместимые со стандартом 802.1Q, все именно так и будет. Остается надеяться на то, что все сетевые платы гигабитного Ethernet будут придерживаться стандарта 802.1Q, с самого начала их производства, и таким образом всем пользователям гигабитного Ethernet этой технологии автоматически станут доступны возможности 802.1Q. Что касается проблемы кадров, длина которых превышает 1518 байт, то в стандарте 802.1Q она решается путем повышения лимита до 1522 байт. При передаче данных в системе могут встречаться как устройства, которым сокращение ВЛВС не говорит ровным счетом ни о чем (например, классический или быстрый Ethernet), так и совместимая с виртуальными сетями аппаратура (например, гигабитный Ethernet). Здесь затененные символы означают ВЛВС-совместимые устройства, а пустые квадратики -- все остальные. Для простоты мы предполагаем, что все коммутаторы ВЛВС-совместимы. Если же это не так, то первый такой ВЛВС-совместимый коммутатор добавит в кадр признак виртуальной сети, основываясь на информации, взятой из MAC- или IP-адреса.

ВЛВС-совместимые сетевые платы Ethernet генерируют кадры с флагами (то есть кадры стандарта 802.1Q), и дальнейшая маршрутизация производится уже с использованием этих флагов. Для осуществления маршрутизации коммутатор, как и раньше, должен знать, какие виртуальные сети доступны на всех портах. Информация о том, что кадр принадлежит серой виртуальной сети, еще, по большому счету, ни о чем не говорит, поскольку коммутатору еще нужно знать, какие порты соединены с машинами серой виртуальной сети. Таким образом, коммутатору нужна таблица соответствия портов виртуальным сетям, из которой также можно было бы узнать, являются ли порты ВЛВС совместимыми. Когда обычный, ничего не подозревающий о существовании виртуальных сетей компьютер посылает кадр на коммутатор виртуальной сети, последний генерирует новый кадр, вставляя в него флаг ВЛВС. Информацию для этого флага он получает с виртуальной сети отправителя (для ее определения используется номер порта, MAC- или IP-адрес.) Начиная с этого момента никто больше не переживает из-за того, что отправитель является машиной, не поддерживающей стандарт 802.1Q, Таким же образом коммутатор, желающий доставить кадр с флагом на такую машину, должен привести его к соответствующему формату. Теперь рассмотрим собственно формат 802.1Q. Единственное изменение -- это пара 2-байтовых полей. Первое называется Идентификатор протокола ВЛВС. Оно всегда имеет значение 0x8100. Поскольку это число превышает 1500, то все сетевые карты Ethernet интерпретируют его как «тип», а не как «длину». Неизвестно, что будет делать карта, несовместимая с 802.1Q, поэтому такие кадры, по идее, не должны к ней никоим образом попадать.

Во втором двухбайтовом поле есть три вложенных поля. Главным из них является идентификатор ВЛВС, который занимает 12 младших битов. Он содержит ту информацию, из-за которой все эти преобразования форматов, собственно, и были затеяны: в нем указано, какой виртуальной сети принадлежит кадр. Трехбитовое поле Приоритет не имеет совершенно ничего общего с виртуальными сетями. Просто изменение формата Ethernet-кадра -- это такой ежедекадный ритуал, который занимает три года и исполняется какой-то сотней людей. Почему бы не оставить память о себе в виде трех дополнительных бит, да еще и с таким привлекательным назначением. Поле Приоритет позволяет различать трафик с жесткими требованиями к реальности масштаба времени, трафик со средними требованиями и трафик, для которого время передачи не критично. Это позволяет обеспечить более высокое качество обслуживания в Ethernet. Оно используется также при передаче голоса по Ethernet (хотя вот уже четверть века в IP имеется подобное поле, и никому никогда не требовалось его использовать). Последний бит, CFI (Canonical Format Indicator -- индикатор классического формата), следовало бы назвать Индикатором эгоизма компании. Изначально он предназначался для того, чтобы показывать, что применяется формат МАС-адреса с прямым порядком байтов (или, соответственно, с обратным порядком), однако в пылу дискуссий об этом как-то забыли. Его присутствие сейчас означает, что поле данных содержит усохший кадр 802.5, который ищет еще одну сеть формата 802.5 и в Ethernet попал совершенно случайно. То есть на самом деле он просто использует Ethernet в качестве средства передвижения. Все это, конечно, практически никак не связано с обсуждаемыми в данном разделе виртуальными сетями. Но политика комитета стандартизации не сильно отличается от обычной политики: если ты проголосуешь за введение в формат моего бита, то я проголосую за твой бит. Как уже упоминалось ранее, когда кадр с флагом виртуальной сети приходит на ВЛВС-совместимый коммутатор, последний использует идентификатор виртуальной сети в качестве индекса таблицы, в которой он ищет, на какой бы порт послать кадр. Но откуда берется эта таблица? Если она разрабатывается вручную, это означает возврат в исходную точку: ручное конфигурирование коммутаторов. Вся прелесть прозрачности мостов состоит в том, что они настраиваются автоматически и не требуют для этого никакого вмешательства извне. Было бы очень стыдно потерять это свойство. К счастью, мосты для виртуальных сетей также являются самонастраивающимися. Настройка производится на основе информации, содержащейся во флагах приходящих кадров. Если кадр, помеченный как ВЛВС 4, приходит на порт 3, значит, несомненно, одна из машин, подключенных к этому порту, находится в виртуальной сети 4. Стандарт 802.1Q вполне четко поясняет, как строятся динамические таблицы. При этом делаются ссылки на соответствующие части алгоритма Перлмана (Perlman), который вошел в стандарт 802.ID. Прежде чем завершить разговор о маршрутизации в виртуальных сетях, необходимо сделать еще одно замечание. Многие пользователи сетей Интернет и Ethernet фанатично привязаны к сетям без установления соединения и неистово противопоставляют их любым системам, в которых есть хотя бы намек на соединение на сетевом уровне или уровне передачи данных. Однако в виртуальных сетях один технический момент как-раз-таки очень сильно напоминает установку соединения. Речь идет о том, что работа виртуальной сети невозможна без того, чтобы в каждом кадре был идентификатор, использующийся в качестве индекса таблицы, встроенной в коммутатор. По этой таблице определяется дальнейший вполне определенный маршрут кадра. Именно это и происходит в сетях, ориентированных на соединение. В системах без установления соединения маршрут определяется по адресу назначения, и там отсутствуют какие-либо идентификаторы конкретных линий, через которые должен пройти кадр.

Основное назначение технологии Wi-Fi (Wireless Fidelity - "беспроводная точность") - беспроводное расширение сетей Ethernet. Она используется также там, где нежелательно или невозможно использовать проводные сети, см. начало раздела "Беспроводные локальные сети" . Например, для передачи информации от движущихся частей механизмов; если нельзя сверлить стены; на большом складе, где компьютер нужно носить с собой.

Wi-Fi разработан консорциумом Wi-Fi на базе серии стандартов IEEE 802.11 (1997 г.) [ANSI ] и обеспечивает скорость передачи от 1...2 до 54 Мбит/с. Wi- Fi консорциум разрабатывает прикладные спецификации для воплощения стандарта Wi- Fi в жизнь, выполняет тестирование и сертификацию продукции других фирм на соответствие стандарту, организует выставки, обеспечивает необходимой информацией разработчиков Wi- Fi оборудования.

Несмотря на то, что стандарт IEEE 802.11 был ратифицирован еще в 1997 г., сети Wi- Fi получили широкое распространение только в последние годы, когда существенно понизились цены на серийное сетевое оборудование. В промышленной автоматизации из множества стандартов серии 802.11 используются только два: 802.11b со скоростью передачи до 11 Мбит/с и 802.11g (до 54 Мбит/с).

Передача сигналов по радиоканалу выполняется двумя методами: FHSS и DSSS (см. раздел ). При этом используется дифференциальная фазовая модуляция DBPSK и DQPSK (см. "Методы модуляции несущей") с применением кодов Баркера, комплементарных кодов (CCK - Complementary Code Keying) и технологии двойного сверточного кодирования (PBCC) [Рошан ].

Wi-Fi 802.11g на скорости 1 и 2 Мбит/с использует модуляцию DBPSK. При скорости передачи 2 Мбит/с используются те же метод, что и при скорости 1 Мбит/с, однако для увеличения пропускной способности канала используется 4 разных значения фазы (0, ) для фазовой модуляции несущей.

Протокол 802.11b, использует дополнительно скорости передачи 5,5 и 11 Мбит/с. На этих скоростях передачи вместо кодов Баркера используются комплементарные коды (CCK).

Wi-Fi использует метод доступа к сети CSMA/ CA (см. раздел "Проблемы беспроводных сетей и пути их решения"), в котором для снижения вероятность коллизий использованы следующие принципы:

  • прежде, чем станция начнет передачу, она сообщает, как долго она будет занимать канал связи;
  • следующая станция не может начать передачу, пока не истечет зарезервированное ранее время;
  • участники сети не знают, принят ли их сигнал, пока не получат подтверждение об этом;
  • если две станции начали работать одновременно, они смогут узнать об этом только по тому факту, что не получат подтверждение о приеме;
  • если подтверждение не получено, участники сети выжидают случайный промежуток времени, чтобы начать повторную передачу.

Предотвращение , а не обнаружение коллизий, является основным в беспроводных сетях, поскольку в них, в отличие от проводных сетей, передатчик трансивера заглушает принимаемый сигнал.

Формат фрейма на уровне PLCP модели OSI (табл. 2.17) в режиме FHSS показан на рис. 2.44 . Он состоит из следующих полей:

  • "Синхрониз." - содержит чередующиеся нули и единицы. Служит для подстройки частоты на принимающей станции, синхронизирует распределение пакетов и позволяет выбрать антенну (при наличии нескольких антенн);
  • "Старт" - флаг начала фрейма. Состоит из строки 0000 1100 1011 1101, которая служит для синхронизации фреймов на принимающей станции;
  • " PLW " - "Psdu Length Word" - "слово длины служебного элемента данных PLCP", PSDU - "PLCP Service Data Unit" - элемент данных подуровня PLCP; указывает размер фрейма, поступившего с уровня MAC, в октетах;
  • "Скорость" - указывает скорость передачи данных фрейма;
  • "КС" - контрольная сумма;
  • "MAC-фрейм" - фрейм, поступивший с MAC-уровня модели OSI и содержащий PSDU;

Формат фрейма на уровне PLCP модели OSI (табл. 2.17) в режиме DSSS показан на рис. 2.45 . В нем поля имеют следующий смысл:

  • "Синхрониз." - содержит только единицы и обеспечивает синхронизацию в приемной станции;
  • "Старт" - флаг начала фрейма. Содержит строку 0 xF3A0, которая указывает начало передачи параметров, зависящих от физического уровня;
  • "Сигнал" - указывает тип модуляции и скорость передачи данного фрейма;
  • "Сервис" - зарезервировано для будущих модификаций стандарта;
  • "Длина" - указывает время в микросекундах, необходимое для передачи MAC-фрейма;
  • "КС " - контрольная сумма;
  • "MAC-фрейм" - фрейм, поступивший с MAC-уровня модели OSI и содержащий PSDU;
  • "Заголовок PLCP" - поля, добавленные на подуровне PLCP.

Дальность связи средствами Wi-Fi сильно зависит от условий распространения электромагнитных волн, типа антенны и мощности передатчика. Типовые значения, указываемые изготовителями Wi-Fi оборудования, составляют 100-200 м в помещении и до нескольких километров на открытой местности с применением внешней антенны и при мощности передатчика 50...100 мВт. Вместе с тем, по сообщению германского еженедельника "Сomputerwoche" во время соревнований по дальности связи была зафиксирована связь на расстоянии 89 км с применением стандартного оборудования Wi-Fi стандарта IEEE 802.11b (2,4 ГГц) и спутниковых антенн ("тарелок"). В книге рекордов Гиннеса зафиксирована также Wi-Fi связь на расстоянии 310 км с применением антенн, поднятых на большую высоту с помощью воздушных шаров.

Архитектура сети Wi-Fi

Стандарт IEEE 802.11 устанавливает три варианта топологии сетей:

При использовании BSS станции общаются другом с другом через общий центральный узел связи, называемый точкой доступа . Точка доступа обычно подключается к проводной локальной сети Ethernet.

Расширенная зона обслуживания получается при объединении нескольких BSS в единую систему посредством распределительной системы, в качестве которой может выступать проводная сеть Ethernet.

2.11.5. Сравнение беспроводных сетей

В табл. 2.18 сведены основные параметры трех рассмотренных беспроводных технологий. В таблице отсутствуют данные о стандартах WiMAX, EDGE, UWB и многих других, которые не нашли широкого применения в промышленной автоматизации.

Табл. 2.18. Сравнение трех ведущих беспроводных технологий

Параметр

Bluetooth/IEEE 802.15.1

ZigBee/IEEE 802.15.4

Wi-Fi/IEEE 802.11

Дальность

Скорость передачи

723 Кбит/с

1...2 Мбит/с, до 54 Мбит/с

Макс. количество участников сети

Не ограничено

Потребляемая мощность

Продолжительность работы от двух батарей размера АА

6 мес. в режиме ожидания

Цена /Сложность (условные единицы)

Повторная передача

DCF - нет; PCF и HCF - есть,

Основное назначение

Связь периферии с компьютером

Беспроводные сети датчиков

Беспроводное расширение Ethernet

В 1980 году в институте IEEE был организован "Комитет 802 по стандартизации локальных сетей", в результате работы которого было принято семейство стандартов IEEE 802.х, которые содержат рекомендации для проектирования нижних уровней локальных сетей. Позже результаты его работы легли в основу комплекса международных стандартов ISO 8802-1...5. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

(Помимо IEEE в работе по стандартизации протоколов локальных сетей принимали участие и другие организации. Так для сетей, работающих на оптоволокне, американским институтом по стандартизации ANSI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мб/с. Работы по стандартизации протоколов ведутся также ассоциацией ECMA (European Computer Manufacturers Association), которой приняты стандарты ECMA-80, 81, 82 для локальной сети типа Ethernet и впоследствии стандарты ECMA-89, 90 по методу передачи маркера.)

Стандарты семейства IEEE 802.x охватывают только два нижних уровня семиуровней модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Специфика локальных сетей нашла также свое отражение в разделении канального уровня на два подуровня:

подуровень управления доступом к среде (Media Access Control, MAC)

подуровень логической передачи данных (Logical Link Control, LLC).

MAC-уровень появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алгоритмом в распоряжение той или иной станции сети. После того, как доступ к среде получен, ею может пользоваться следующий подуровень, организующий надежную передачу логических единиц данных - кадров информации. В современных локальных сетях получили распространение несколько протоколов MAC-уровня, реализующих различные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий как Ethernet, Token Ring, FDDI, 100VG-AnyLAN.

Уровень LLC отвечает за достоверную передачу кадров данных между узлами, а также реализует функции интерфейса с прилегающим к нему сетевым уровнем. Для уровня LLC также существует несколько вариантов протоколов, отличающихся наличием или отсутствием на этом уровне процедур восстановления кадров в случае их потери или искажения, то есть отличающихся качеством транспортных услуг этого уровня.

Протоколы уровней MAC и LLC взаимно независимы - каждый протокол MAC-уровня может применяться с любым типом протокола LLC-уровня и наоборот.

Стандарт IEEE 802 содержит несколько разделов:

В разделе 802.1 приводятся основные понятия и определения, общие характеристики и требования к локальным сетям.

Раздел 802.2 определяет подуровень управления логическим каналом llc.

Разделы 802.3 - 802.5 регламентируют спецификации различных протоколов подуровня доступа к среде MAC и их связь с уровнем LLC:

стандарт 802.3 описывает коллективный доступ с опознаванием несущей и обнаружением конфликтов (Carrier sense multiple access with collision detection - CSMA/CD), прототипом которого является метод доступа стандарта Ethernet;

стандарт 802.4 определяет метод доступа к шине с передачей маркера (Token bus network), прототип - ArcNet;

стандарт 802.5 описывает метод доступа к кольцу с передачей маркера (Token ring network), прототип - Token Ring.

Для каждого из этих стандартов определены спецификации физического уровня, определяющие среду передачи данных (коаксиальный кабель, витая пара или оптоволоконный кабель), ее параметры, а также методы кодирования информации для передачи по данной среде.

Все методы доступа используют протоколы уровня управления логическим каналом LLC, описанным в стандарте 802.2.

IEEE 802.1Q - открытый стандарт, который описывает процедуру тегирования трафика для передачи информации о принадлежности к VLAN .

Так как 802.1Q не изменяет заголовки кадра, то сетевые устройства, которые не поддерживают этот стандарт, могут передавать трафик без учёта его принадлежности к VLAN.

802.1Q помещает внутрь фрейма тег , который передает информацию о принадлежности трафика к VLAN"у.

Тег 802.1Q
⊲━━ Tag Control Information (TCI) ━━⊳
TPID Priority CFI VID
16 3 1 12 bits

Размер тега - 4 байта. Он состоит из таких полей:

  • Tag Protocol Identifier (TPID) - Идентификатор протокола тегирования. Размер поля - 16 бит. Указывает, какой протокол используется для тегирования. Для 802.1q используется значение 0x8100.
  • Tag Control Information (TCI) - поле, инкапсулирующее в себе поля приоритета, канонического формата и идентификатора VLAN:
    • Priority - приоритет. Размер поля - 3 бита. Используется стандартом IEEE 802.1p для задания приоритета передаваемого трафика.
    • Canonical Format Indicator (CFI) - Индикатор канонического формата. Размер поля - 1 бит. Указывает на формат MAC-адреса. 0 - канонический(Кадр Ethernet), 1 - не канонический(Кадр Token Ring,FDDI).
    • VLAN Identifier (VID) - идентификатор VLAN"а. Размер поля - 12 бит. Указывает, какому VLAN"у принадлежит фрейм. Диапазон возможных значений VID от 0 до 4094.

При использовании стандарта Ethernet II 802.1Q вставляет тег перед полем "Тип протокола". Так как фрейм изменился, пересчитывается контрольная сумма.

В стандарте 802.1Q существует понятие Native VLAN . По умолчанию это VLAN 1. Трафик, передающийся в этом VLAN, не тегируется.

Существует аналогичный 802.1Q проприетарный протокол, разработанный компанией Cisco Systems - ISL .

Эту статью я написал для после того, как наконец понял формат кадра Ethernet (2-ой уровень модели OSI) и разобрался, как маркируется трафик на принадлежность к VLAN.

Напоминаю, что стандарт Ethernet (FastEthernet) технология передачи данны, описанная в стандарте комитета IEEE 802.3. При передачи данных в среде, данные на 2-ом уровне разбиваются на кадры (фреймы) и посылаются в среду передачи. Формат кадра весьма незамысловат:

Строение кадра FastEthernet

  1. PREAMBLE. Семь байт данных, предназначеных для синхронизации. Каждый байт содержит одну и ту же последовательность: 10101010. Это поле используется для того, чтобы дать возможность схемам трансиверов прийти в устойчивый синхронизм с принимаемыми сигналами. Так же в это поле включается байт SFD (тут не показан) – начального ограничителя кадров, который имеет вид: 10101011. Появление этой комбинации является указанием на предстоящий приём кадра.
  2. DEST MAC. Аппаратный адрес получателя (Destination).
  3. SRC MAC. Аппаратный адрес источника (Source).
  4. TYPE: Тип протокола верхнего уровня. 0x800 – IP, 0x806 – ARP и т.д. Полный список можно увидеть :
  5. DATA: Собственно данные кадра. Может занимать от 0 до 1500 байт, но если данных меньше 46 байт, то используется специальное поле дополнения, здесь не обозначено. Таким образом считаем, что кадр содержит 46-1546 байт. Поле дополнения служит для эффективного определения коллизий.
  6. FCS: Контрольная сумма кадра по CRC32. Что такое контрольная сумма – объяснять, надеюсь, не нужно. Вообще оно редко используется, гораздо проще проверять целостность пакетов или фрагментов на протоколах более высокого уровня. Ну для кого это новое, то расскажу, для чего нужна контрольная сумма. При отправке кадра передающая станция вычисляет специальным алгоритмом значение, которое записывается в это поле. В значении учитываются все биты кадра. При получении кадра, принимающая сторона вычисляет это значение снова (без учёта этого поля) и сравнивает со значением в поле. Если они равны, то считается, что кадр получен без ошибок.

Строение Ethernet кадра инкапсулированного в 802.1Q.

Как мы видим, практически всё осталось неизменным. Та же PREAMBLE, байт SFD, MAC-адреса источника и получателя. А далее – добавилось 4 новых байта. Вот это и есть так называемый тег VLAN . Остальные поля неизменны, и просто немного смещаются. При прохождении трафика через порт, тег просто изымается и работа ведётся на привычном уровне.

Рассмотрю более подробно сам тег VLAN:

Биты Значение
1-16 Tag Protocol Identifier. На схеме это TPID . Для 802.1Q всегда равен 0x810 . То есть встретив эти 2 байта можно сделать вывод, что трафик меченый.
17-19 Priority . Приоритет трафика. Эти три бита используются стандартом 802.1p для задания приоритета трафика. Это и два следующих поля – TCI .
20 Canonical Format Indicator – индикатор канонического формата MAC-адреса. Если бит = 0, – канонический. Если = 1, не канонический. Ну то бишь Token Ring
21-32 VLAN Identifier . В этих 12 битах закодирован номер VLAN . Может принимать значение от 0 до 4094. Не все коммутаторы поддерживают такое количество, да и по правде сказать, не всегда такое нужно. В нашем случае это значение равно 0xA , что означает 10-ый VLAN .



 


Читайте:



Праздник непослушания (Повесть-сказка) Праздник непослушания герои сказки

Праздник непослушания (Повесть-сказка) Праздник непослушания герои сказки

Михалков Сергей Владимирович Праздник Непослушания Сергей Владимирович Михалков Праздник Непослушания Повесть-сказка "Праздник Непослушания" -...

Почвенный покров южной америки

Почвенный покров южной америки

Страница 1 В отличие от Северной Америки, где изменения в растительном покрове зависят в значительной степени от изменений температурных условий,...

Расправленные крылья - музыкальная пауза Порядок описания Московской операции

Расправленные крылья - музыкальная пауза Порядок описания Московской операции

Ситуация на фронте весной 1942 года, планы сторон, немецкое наступление летом 1942 года, начало Сталинградской битвы, немецкий оккупационный режим,...

Cобытия Второй мировой войны

Cобытия Второй мировой войны

Вторая мировая война считается самой крупной в истории человечества. Она началась и закончилась 2 сентября 1945 года. За это время в ней приняло...

feed-image RSS