Главная - Логопедия
Форма и размеры земли. Странные факты, подтверждающие, что земля не круглая и не вращается

Какова дальность до линии горизонта для наблюдателя, стоящего на земле? Ответ — приближённое расстояние до горизонта — можно найти с помощью теоремы Пифагора.

Для проведения приближённых расчётов сделаем допущение, что Земля имеет форму шара. Тогда стоящий вертикально человек будет продолжением земного радиуса, а линия взгляда, направленного на горизонт, — касательной к сфере (поверхности Земли). Так как касательная перпендикулярна радиусу, проведённому в точку касания, то треугольник (центр Земли) —(точка касания) —(глаз наблюдателя) является прямоугольным.

Две стороны в нём известны. Длина одного из катетов (стороны, прилегающей к прямому углу) равна радиусу Земли $R$, а длина гипотенузы (стороны, лежащей против прямого угла) равна $R+h$, где $h$ — расстояние от земли до глаз наблюдателя.

По теореме Пифагора, сумма квадратов катетов равна квадрату гипотенузы. Значит, расстояние до горизонта равно
$$
d=\sqrt{(R+h)^2-R^2} = \sqrt{(R^2+2Rh+h^2)-R^2} =\sqrt{2Rh+h^2}.
$$Величина $h^2$ очень мала по сравнению со слагаемым $2Rh$, поэтому верно приближённое равенство
$$
d≈ \sqrt{2Rh}.
$$
Известно, что $R≈ 6400$ км, или $R≈ 64\cdot10^5$ м. Будем считать, что $h≈ 1{,}6$ м. Тогда
$$
d≈\sqrt{2\cdot64\cdot10^5\cdot 1{,}6}=8\cdot 10^3 \cdot \sqrt{0{,}32}.
$$Используя приближённое значение $\sqrt{0{,}32}≈ 0{,}566$, находим
$$
d≈ 8\cdot10^3 \cdot 0{,}566=4528.
$$Полученный ответ — в метрах. Если перевести найденное приближённое расстояние от наблюдателя до горизонта в километры, то получим $d≈ 4,5$ км.

В дополнение — три микросюжета, связанных с рассмотренной задачей и проделанными вычислениями.

I. Как связано расстояние до горизонта с изменением высоты точки наблюдения? Формула $d≈ \sqrt{2Rh}$ даёт ответ: чтобы увеличить расстояние $d$ вдвое, высоту $h$ надо увеличить в четыре раза!

II. В формуле $d≈ \sqrt{2Rh}$ нам пришлось извлекать квадратный корень. Конечно, читатель может взять смартфон со встроенным калькулятором, но, во‐первых, полезно задуматься, а как же решает эту задачу калькулятор, а во‐вторых, стоит ощутить умственную свободу, независимость от «всезнающего» гаджета.

Существует алгоритм, сводящий извлечение корня к более простым операциями — сложению, умножению и делению чисел. Для извлечения корня из числа $a>0$ рассмотрим последовательность
$$
x_{n+1}=\frac12 (x_n+\frac{a}{x_n}),
$$где $n=0$, 1, 2, …, а в качестве $x_0$ можно взять любое положительное число. Последовательность $x_0$, $x_1$, $x_2$, … очень быстро сходится к $\sqrt{a}$.

Например, при вычислении $\sqrt{0,32}$ можно взять $x_0=0,5$. Тогда
$$
\eqalign{
x_1 &=\frac12 (0,5+\frac{0,32}{0,5})=0,57,\cr
x_2 &=\frac12 (0,57+\frac{0,32}{0,57})≈ 0,5657.\cr}
$$Уже на втором шаге мы получили ответ, верный в третьем знаке после запятой ($\sqrt{0,32}=0,56568…$)!

III. Иногда алгебраические формулы удаётся столь наглядно представить как соотношения элементов геометрических фигур, что всё «доказательство» заключается в рисунке с подписью «Смотри!» (в стиле древних индийских математиков).

Объяснить геометрически можно и использованную формулу «сокращённого умножения» для квадрата суммы
$$
(a+b)^2=a^2+2ab+b^2.
$$Жан‐Жак Руссо в «Исповеди» писал: «Когда я в первый раз обнаружил при помощи вычисления, что квадрат бинома равен сумме квадратов его членов и их удвоенному произведению, я, несмотря на правильность произведённого мною умножения, не хотел этому верить до тех пор, пока не начертил фигуры».

Литература

  • Перельман Я. И. Занимательная геометрия на вольном воздухе и дома. - Л.: Время, 1925. - [И любое издание книги Я. И. Перельмана «Занимательная геометрия»].

Форма и размеры земли

Общая форма Земли, как материального тела, определяется действием внутренних и внешних сил на ее частицы. Если бы Земля была неподвижным однородным телом и подвергалась действию только внутренних сил тяготения, она имела бы форму шара. Действие центробежной силы, вызванной вращением Земли вокруг ее оси, определяет сплюснутость Земли у полюсов. Под воздействием внутренних и внешних сил физическая (топографическая) поверхность Земли образует фигуру неправильной, сложной формы. Одновременно на физической поверхности Земли встречаются самые различные неровности: горы, хребты, долины, котловины и т. д. Описать такую фигуру при помощи каких-либо аналитических зависимостей невозможно. В то же время для решения геодезических задач в конечном виде необходимо основываться на определенной математически строгой фигуре – только тогда возможно получение расчетных формул. Исходя из этого задачу по определению формы и размеров Земли принято делить на две части:

1) установление формы и размеров некоторой типичной фигуры, представляющей Землю в общем виде;

2) изучение отступлений физической поверхности Земли от этой типичной фигуры.

Известно, что 71 % земной поверхности покрывают моря и океаны, суши – только 29 %. Поверхность же морей и океанов характерна тем, что она в любой точке перпендикулярна к отвесной линии, т.е. направлению действия силы тяжести (если вода находится в спокойном состоянии). Направление действия силы тяжести можно установить в любой точке и соответственно построить поверхность, перпендикулярную к направлению этой силы. Замкнутая поверхность, которая в любой точке перпендикулярна к направлению действия силы тяжести, т.е. перпендикулярна к отвесной линии, называется уровенной поверхностью.

Уровенная поверхность, совпадающая со средним уровнем воды в морях и океанах в их спокойном состоянии и мысленно продолженная под материками, называется основной (исходной, нулевой) уровенной поверхностью. В геодезии за общую фигуру Земли принимают фигуру, ограниченную основной уровенной поверхностью, и такую фигуру именуют геоидом (рис. 1.1).

Вследствие особой сложности, геометрической неправильности геоида, его заменяют другой фигурой – эллипсоидом, образующимся при вращении эллипса вокруг его малой оси РР 1 (рис. 1.2). Размеры эллипсоида определялись неоднократно учеными ряда стран. В Российской Федерации они были вычислены под руководством профессора Ф.Н. Красовского в 1940 г. и в 1946 г. постановлением Совета Министров СССР были утверждены: большая полуось а = 6 378 245 м, малая полуось b = 6 356 863 м, сжатие

Земной эллипсоид ориентируют в теле Земли так, чтобы его поверхность в наибольшей мере соответствовала поверхности геоида. Эллипсоид с определенными размерами и определенным образом ориентированный в теле Земли называется референц-эллипсоидом (сфероидом).

Наибольшие отклонения геоида от сфероида составляют 100–150 м. В тех случаях, когда при решении практических задач фигуру Земли принимают за шар, радиус шара, равновеликого по объему эллипсоиду Красовского, составляет R = 6 371 110 м = 6371,11 км.

При решении практических задач в качестве типичной фигуры Земли принимают сфероид или шар, а для небольших участков кривизну Земли вообще не учитывают. Такие отступления целесообразны, так как упрощается проведение геодезических работ. Но эти отступления приводят к искажениям при отображении физической поверхности Земли тем методом, который принято именовать в геодезии методом проекций.

Метод проекций при составлении карт и планов заключается в том, что точки физической поверхности Земли А, В и так далее проектируются отвесными линиями на уровенную поверхность (см. рис. 1.3, а ,б ). Точки а, b и так далее называются горизонтальными проекциями соответствующих точек физической поверхности. Затем определяется положение этих точек на уровенной поверхности с помощью различных систем координат, и тогда их можно нанести на лист бумаги, т. е. на лист бумаги будет нанесен отрезок ab, который является горизонтальной проекцией отрезка AВ. Но, чтобы по горизонтальной проекции определить действительное значение отрезка AВ, необходимо знать длины аА и (см. рис. 1.3, б ), т.е. расстояния от точек A и В до уровенной поверхности. Эти расстояния называются абсолютными высотами точек местности.

Таким образом, задача составления карт и планов распадается на две:

определение положения горизонтальных проекций точек;

определение высот точек местности.

При проектировании точек на плоскость, а не на уровенную поверхность, появляются искажения: вместо отрезка ab будет отрезок а"b" вместо высот точек местности аА и будут а"А и b"В (см. рис. 1.3, а ,б ).

Итак, длины горизонтальных проекций отрезков и высоты точек будут различны и при проектировании на уровенную поверхность, т.е. при учете кривизны Земли, и при проектировании на плоскость, когда кривизна Земли не учитывается (рис. 1.4). Эти различия будут наблюдаться в длинах проекций DS = t – S , в высотах точек Dh = b"О – bО = b"О – R.

Рис. 1.3. Метод проекций

Задача в отношении учета кривизны Земли сводится к следующему: принимая Землю за шар с радиусом R ,необходимо определить, для какого наибольшего значения отрезка S можно не учитывать кривизну Земли при условии, что в настоящее время относительная погрешность считается допустимой при самых точных измерениях расстояний ( – 1 см на 10 км). Искажение по длине составит
DS = t S = R tga – R a = R (tga a). Но, так как S мало по сравнению с радиусом Земли R, то для малого угла можно принять . Тогда . Ho и тогда . Соответственно и км (с округлением до 1 км).

Рис. 1.4. Схема к решению задачи о влиянии кривизны Земли
на величину искажений в проекциях и высотах

Следовательно, участок сферической поверхности Земли диаметром в 20 км можно принимать за плоскость, т.е. кривизну Земли в пределах такого участка, исходя из погрешности , можно не учитывать.

Искажение в высоте точки Dh = b"О – bО = R seca – R = R (seca – 1). Принимая , получаем
. При разных значениях S получаем:

S , км: 0,1; 0,2; 0,3; 1; 10;
Dh , см: 0,1; 0,3; 0,7; 7,8; 78,4.

В инженерно-геодезических работах допускаемая погрешность обычно составляет не более 5 см на 1 км, и поэтому кривизну Земли следует учитывать при сравнительно небольших расстояниях между точками, порядка 0,8 км.

1.2. Общие понятия о картах, планах и профилях

Главное отличие плана от карты заключается в том, что при изображении участков земной поверхности на плане горизонтальные проекции соответствующих отрезков наносят без учета кривизны Земли. При составлении карт кривизну Земли приходится учитывать.

Практические потребности в точности изображения участков земной поверхности различны. При составлении проектов строительных объектов они значительно выше, чем при общем изучении территории района, геологических обследованиях и т.д.

Известно, что с учетомдопустимой погрешности при измерении расстояний DS = 1 см на 10 км участок сферической поверхности Земли диаметром в 20 км можно принимать за плоскость, т.е. кривизну Земли для такого участка можно не учитывать.

Соответственно создание плана схематически можно представить следующим образом. Непосредственно на местности (см. рис. 1.3,а ) измеряют расстояния АВ, ВС … , горизонтальные углы b 1 ; b 2 … и углы наклона линий к горизонту n 1 , n 2 ... . Затем от измеренной длины линии местности, например AB , переходят к длине ее ортогональной проекции а"b" на горизонтальной плоскости, т.е. определяют горизонтальное проложение этой линии по формуле а"b" = AB cosn, и, уменьшая в определенное число раз (масштаб), откладывают отрезок а"b" на бумаге. Вычислив аналогичным путем горизонтальные проложения других линий, получают на бумаге многоугольник (уменьшенный и подобный многоугольнику а"b"c"d"е" ), который является планом контура местности АВСDЕ.

План – уменьшенное и подобное изображение на плоскости горизонтальной проекции небольшого участка земной поверхности без учета кривизны Земли.

Планы принято подразделять по содержанию и масштабу. Если на плане изображены только местные объекты, то такой план называют контурным (ситуационным). Если дополнительно на плане отображен рельеф, то такой план называют топографическим.

Стандартные масштабы планов 1:500; 1:1000; 1:2000; 1:5000.

Карты обычно разрабатывают для обширной части земной поверхности, при этом приходится учитывать кривизну Земли. Изображение участка эллипсоида или шара нельзя перенести на бумагу без разрывов. В то же время соответствующие карты предназначаются для решения конкретных задач, например для определения расстояний, площадей участков и т.д. При разработке карт задача состоит не в полном устранении искажений, что невозможно, а в уменьшении искажений и математическом определении их значений с тем, чтобы по искаженным изображениям можно было вычислить действительные величины. Для этого применяют картографические проекции, дающие возможность изображать на плоскости поверхность сфероида или шара по математическим законам, обеспечивающим измерения по карте.

Различные требования к картам определили наличие многих картографических проекций, которые подразделяют на равноугольные, равновеликие и произвольные. В равноугольных (конформных) проекциях сфероида на плоскость сохраняются углы изображаемых фигур, но масштаб при переходе от точки к точке изменяется, что приводит к искажению фигур конечных размеров. Однако небольшие участки карты, в пределах которых изменения масштаба не имеют существенного значения, можно рассматривать и использовать как план.

В проекциях равновеликих (эквивалентных) сохраняется отношение площадей любых фигур на сфероиде и на карте, т.е. масштабы площадей везде одинаковы (при отличающихся масштабах по различным направлениям).

В произвольных проекциях не соблюдается ни равноугольность, ни равновеликость. Они применяются для мелкомасштабных обзорных карт, а также для специальных карт в тех случаях, когда карты обладают каким-либо специфическим полезным свойством.

Карта – построенное по определенным математическим законам, уменьшенное и обобщенное изображение поверхности Земли на плоскости.

Карты принято подразделять по содержанию, назначению и масштабу.

По содержанию карты бывают общегеографические и тематические, по назначению – универсальные и специальные. Общегеографические карты универсального назначения отображают земную поверхность с показом всех ее основных элементов (населенные пункты, гидрография и т.д.). Математическая основа, содержание и оформление специальных карт подчиняются их целевому назначению (карты морские, авиационные и многие другие сравнительно узкого назначения).

По масштабам карты условно делят на три вида:

крупномасштабные (1:100 000 и крупнее);

среднемасштабные (1:200 000 – 1:1 000 000);

мелкомасштабные (мельче 1:1 000 000).

Карты, подобно планам, бывают контурными и топографическими. В Российской Федерации государственные топографические карты издают в масштабах 1:1 000 000 – 1:10 000.

В тех случаях, когда карты или планы используют для проектирования инженерных сооружений, для получения оптимального решения особое значение приобретает наглядность в отношении физической поверхности Земли по какому-либо направлению. Например, при проектировании линейных сооружений (дорог, каналов и т.д.) необходимы: детальная оценка крутизны скатов на отдельных участках трассы, ясное представление о почвенно-грунтовых и гидрологических условиях местности, по которой проходит трасса. Такую наглядность, позволяющую принимать обоснованные инженерные решения, обеспечивают профили.

Профиль – изображение на плоскости вертикального разреза земной поверхности по заданному направлению. Чтобы неровности земной поверхности были более заметными, вертикальный масштаб следует выбирать крупнее горизонтального (обычно в 10–20 раз). Таким образом, как правило, профиль является не подобным, а искаженным изображением вертикального разреза земной поверхности.

Масштабы

Горизонтальные проекции отрезков (см. рис. 1.3,б отрезки ab или а"b" )при составлении карт и планов изображают на бумаге в уменьшенном виде. Степень такого уменьшения характеризуется масштабом.

Масштаб карты (плана) – отношение длины линии на карте (плане) к длине горизонтального проложения соответствующей линии местности:

.

Масштабы бывают численные и графические. Численный масштаб фиксируют двумя способами.

1. В виде простой дроби в числителе единица, в знаменателе степень уменьшения m ,например (или М = 1:2000).

2. В виде именованного соотношения, например в 1 см 20 м. Целесообразность такого соотношения определяется тем, что при изучении местности по карте удобно и привычно оценивать длину отрезков на карте в сантиметрах, а длину горизонтальных проложений на местности представлять в метрах или километрах. Для этого численный масштаб преобразовывают в разнотипные единицы измерения: 1 см карты соответствует такому-то количеству метров (километров) местности.

Пример 1 . На плане (в 1 см 50 м) расстояние между точками составляет 1,5 см. Определить горизонтальное проложение между этими же точками на местности.

Решение: 1,5 ´ 5000 = 7500 см = 75 м (или 1,5 ´ 50 = 75 м).

Пример 2. Горизонтальное проложение между двумя точками на местности равно 40 м. Чему будет равно расстояние между этими же точками на плане М = 1:2000 (в 1 см 20 м)?

Решение: см .

Чтобы избежать вычислений и ускорить работу, пользуются графическими масштабами. Таких масштабов два: линейный и поперечный.

Для построения линейного масштаба выбирают исходный отрезок, удобный для данного масштаба (чаще длиной 2 см). Этот исходный отрезок называется основанием масштаба (рис. 1.5). Основание откладывают на прямой линии необходимое число раз, крайнее левое основание делят на части (обычно на 10 частей). Затем линейный масштаб подписывают, исходя из того численного масштаба, для которого он строится (на рис. 1.5,а для М = 1:25 000). Такой линейный масштаб позволяет определенным образом оценить отрезок с точностью в 0,1 доли основания, дополнительную часть этой доли приходится оценивать на глаз.

Для обеспечения необходимой точности измерений угол между плоскостью карты и каждой ножкой циркуля-измерителя (рис. 1.5,б )не должен быть менее 60°, и измерение длины отрезка следует произвести не менее двух раз. Расхождение DS , м между результатами измерений должно быть , где Т – число тысяч в знаменателе численного масштаба. Так, например, при измерении отрезков по карте М и пользовании линейным масштабом, который помещен обычно за южной стороной рамки листа карты, расхождения при двойных измерениях не должны превышать 1,5 ´ 10 = 15 м.

Рис. 1.5. Линейный масштаб

Если отрезок длиннее построенного линейного масштаба, то его измеряют по частям. В этом случае расхождение между результатами измерения в прямом и обратном направлениях не должно превышать , где п – число установок измерителя при измерении данного отрезка.

Для более точных измерений пользуются поперечным масштабом, имеющим на линейном масштабе дополнительное построение по вертикали (рис. 1.6).

После того как необходимое количество оснований масштаба отложено (также обычно длиной 2 см, тогда масштаб называется нормальным), восстанавливают перпендикуляры к исходной линии и делят их на равные отрезки (на m частей). Если основание разделено на п частей и точки деления верхнего и нижнего основания соединены наклоннымилиниями (трансверсалями) так, как показано на рис. 1.6, то отрезок . Соответственно отрезок ef = 2cd ; рq = 3сd и т. д. Если m = п = 10, то cd = 0,01 основания, т. е. такой поперечный масштаб позволяет определенным образом оценить отрезок с точностью в 0,01 доли основания, дополнительную часть этой доли – на глаз. Поперечный масштаб, у которого длина основания 2 см и m = п = 10, называют сотенным нормальным.

Рис. 1.6. Построение поперечного масштаба

Поперечный масштаб гравируют на металлических линейках, которые называются масштабными. Перед применением масштабной линейки следует оценить основание и его доли по следующей схеме.

Пусть численный масштаб 1:5000, именованное соотношение будет: в 1 см 50 м. Если поперечный масштаб нормальный (основание 2см, рис. 1.7), то основание составит 100 м; 0,1 основания – 10 м; 0,01 основания – 1 м. Задача по отложению отрезка заданной длины сводится к определению числа оснований, его десятых и сотых долей и, в необходимых случаях, к глазомерному определению части его наименьшей доли. Пусть, например, требуется отложить отрезок d = 173,35 м, т. е. требуется взять в раствор измерителя: 1 основание +7 (0,1 основания) +3 (0,01 основания) и на глаз расположить ножки измерителя между горизонтальными линиями 3 и 4 (см. рис. 1.7) так, чтобы линия АБ отсекала 0,35 промежутка между этими линиями (отрезок ДЕ). Обратная задача (определение длины отрезка, взятого в раствор измерителя) соответственно и решается в обратном порядке. Добившись совмещения игл измерителя с соответствующими вертикальной и наклонной линиями так, чтобы обе ножки измерителя находились на одной горизонтальной линии, считываем количество оснований и его долей (d BГ = 235,3 м).

Рис. 1.7. Поперечный масштаб

При проведении съемок местности для получения планов неизбежно возникает вопрос: какие наименьшие размеры объектов местности должны отобразиться на плане? Очевидно, чем крупнее масштаб съемки, тем меньше будет линейный размер таких объектов. Для того чтобы применительно к конкретному масштабу плана можно было принять определенное решение, вводится понятие о точности масштаба. При этом исходят из следующего. Опытным путем установлено, что измерить расстояние, пользуясь циркулем и масштабной линейкой, точнее, чем 0,1 мм, невозможно. Соответственно под точностью масштаба понимают длину отрезка на местности, соответствующую 0,1 мм на плане данного масштаба. Так, если М 1:2000, то точность будет: , но d пл = 0,1 мм, тогда d местн = 2000 ´ 0,1 мм = 200 мм = 0,2 м. Следовательно, в этом масштабе (1:2000) предельная графическая точность при нанесении линий на план будет характеризоваться величиной 0,2 м, хотя линии на местности могли измеряться с более высокой точностью.

Следует иметь в виду, что при измерениях на плане взаимного положения контуров точность определяется не графической точностью, а точностью самого плана, где ошибки могут составлять в среднем 0,5 мм вследствие влияния других, кроме графических, погрешностей.

Практическая часть

I. Решите следующие задачи.

1. Определите численный масштаб, если горизонтальное проложение линии местности длиною 50 м на плане выражается отрезком в 5 см.

2. На плане следует отобразить здание, длина которого в натуре 15,6 м. Определите длину здания на плане в мм.

II. Постройте линейный масштаб, для чего проведите линию длиной 8 см (см. рис. 1.5, а ). Выбрав основание масштаба длиной 2 см, отложите 4 основания, крайнее левое основание разделите на 10 частей, произведите оцифровку для трех масштабов: ; ; .

III. Решите следующие задачи.

1. Отложите на бумаге в трех указанных масштабах отрезок длиной 144 м.

2. Пользуясь линейным масштабом учебной карты , измерьте длину горизонтального проложения трех отрезков. Оцените точность измерения по зависимости . Здесь T – число тысяч в знаменателе численного масштаба.

IV. Пользуясь масштабной линейкой, решите следующие задачи.

Отложите на бумаге длину линий местности, оформив результаты упражнения в табл. 1.1.

Рис. 4 Основные линии и плоскости наблюдателя

Для ориентирования в море принята система условных линий и плоскостей наблюдателя. На рис. 4 изображен земной шар, на поверхности которого в точке М располагается наблюдатель. Его глаз находится в точке А . Буквой е обозначена высота глаза наблюдателя над уровнем моря. Линия ZMn, проведенная через место наблюдателя и центр земного шара, называется отвесной или вертикальной линией. Все плоскости, проведенные через эту линию, называются вертикальными , а перпендикулярные ей - горизонтальными . Горизонтальная плоскость НН / , проходящая через глаз наблюдателя, называется плоскостью истинного горизонта . Вертикальная плоскость VV / , проходящая через место наблюдателя М и земную ось, называется плоскостью истинного меридиана. В пересечении этой плоскости с поверхностью Земли образуется большой круг РnQPsQ / , называемый истинным меридианом наблюдателя . Прямая, полученная от пересечения плоскости истинного горизонта с плоскостью истинного меридиана, называется линией истинного меридиана или полуденной линией N-S. Этой линией определяется направление на северную и южную точки горизонта. Вертикальная плоскость FF / , перпендикулярная плоскости истинного меридиана, называется плоскостью первого вертикала . В пересечении с плоскостью истинного горизонта она образует линию Е-W, перпендикулярную линии N-S и определяющую направления на восточную и западную точки горизонта. Линии N-S и Е-W делят плоскость истинного горизонта на четверти: NE, SE, SW и NW.

Рис.5. Дальность видимости горизонта

В открытом море наблюдатель видит вокруг судна водную поверхность, ограниченную малым кругом СС1 (рис. 5). Этот круг называется видимым горизонтом. Расстояние De от места судна М до линии видимого горизонта СС 1 называется дальностью видимого горизонта . Теоретическая дальность видимого горизонта Dt (отрезок AB) всегда меньше его действительной дальности De. Это объясняется тем, что из-за различной плотности слоев атмосферы по высоте луч света распространяется в ней не прямолинейно, а по кривой АС. В результате наблюдатель может видеть дополнительно некоторую часть водной поверхности, расположенную за линией теоретического видимого горизонта и ограниченную малым кругом СС 1 . Этот круг и является линией видимого горизонта наблюдателя. Явление преломления световых лучей в атмосфере называется земной рефракцией. Рефракция зависит от атмосферного давления, температуры и влажности воздуха. В одном и том же месте Земли рефракция может меняться даже на протяжении одних суток. Поэтому при расчетах берут среднее значение рефракции. Формула для определения дальности видимого горизонта:


В результате рефракции наблюдатель видит линию горизонта в направлении АС / (рис. 5), касательном к дуге АС. Эта линия приподнята на угол r над прямым лучом АВ. Угол r также называется земной рефракцией. Угол d между плоскостью истинного горизонта НН / и направлением на видимый горизонт называется наклонением видимого горизонта .

ДАЛЬНОСТЬ ВИДИМОСТИ ПРЕДМЕТОВ И ОГНЕЙ. Дальность видимого горизонта позволяет судить о видимости предметов, находящихся на уровне воды. Если предмет имеет определенную высоту h над уровнем моря, то наблюдатель может обнаружить его на расстоянии:

На морских картах и в навигационных пособиях приводится заранее вычисленная дальность видимости огней маяков Dk с высоты глаза наблюдателя 5 м. С такой высоты De равна 4,7 мили. При е , отличной от 5 м, следует вносить поправку. Её величина равна:

Тогда дальность видимости маяка Dn равна:

Дальность видимости предметов, расчитанная по данной формуле, называется геометрической, или географической. Вычисленные результаты соответствуют некоторому среднему состоянию атмосферы в дневное время суток. При мгле, дожде, снегопаде или туманной погоде видимость предметов, естественно, сокращается. Наоборот, при определенном состоянии атмосферы рефракция может быть очень большой, вследствие чего дальность видимости предметов оказывается значительно больше рассчитанной.

Дальность видимого горизонта. Таблица 22 МТ-75:

Таблица вычислена по формуле:

Де = 2.0809 ,

Входя в табл. 22 MT-75 с высотой предмета h над уровнем моря, получают дальность видимости этого предмета с уровня моря. Если к полученной дальности прибавить дальность видимого горизонта, найденную в той же таблице по высоте глаза наблюдателя е над уровнем моря, то сумма этих дальностей составит дальность видимости предмета, без учета прозрачности атмосферы.

Для получения дальности радиолокационного горизонта Дp принято выбранную из табл. 22 дальность видимого горизонта увеличивать на 15%, тогда Дp=2.3930 . Эта формула справедлива для стандартных условий атмосферы: давление 760 мм, температура +15°C, градиент температуры - 0.0065 градуса на метр, относительная влажность, постоянная с высотой, 60%. Любое отклонение от принятого стандарт­ного состояния атмосферы обусловит частичное изменение дальности радиолокационного горизонта. Кроме того, эта дальность, т. е. расстоя­ние, с которого могут быть видны отраженные сигналы на экране радио­локатора, в значительной степени зависит от индивидуальных особенностей радиолокатора и отражающих свойств объекта. По этим причинам пользоваться коэффициентом 1.15 и данными табл. 22 следует с осторожностью.

Сумма дальностей радиолокационного горизонта антенны Лд и наблюдаемого объекта высотой А представит собой максимальное рас­стояние, с которого может вернуться отраженный сигнал.

Пример 1. Определить дальность обнаружения маяка высотой h=42 м от уровня моря с высоты глаза наблюдателя е=15.5 м.
Решение. Из табл. 22 выбирают:
для h = 42 м ..... . Дh = 13.5 мили;
для е = 15.5 м . . . . . . Де = 8.2 мили,
следовательно, даль­ность обнаружения маяка
Дп = Дh+Дe = 21.7 мили.

Дальность видимости предмета можно определить также по номограмме, помещенной на вкладыше (приложение 6). MT-75

Пример 2. Найти радиолокационную дальность объекта высотой h=122 м, если действующая высота радиолокационной антенны Hд= 18.3 м над уровнем моря.
Решение. Из табл. 22 выбирают дальности видимости объекта и антенны с уровня моря соответственно 23.0 и 8.9 мили. Суммируя эти дальности и умножая их на коэффициент 1.15, получают, что объект при стандартных условиях атмосферы, вероятно, будет обнаружен с расстояния 36.7 мили.

Дальность видимости горизонта

Наблюдаемая в море линия, по которой море как бы соединяется с небосводом, называется видимым горизонтом наблюдателя.

Если глаз наблюдателя находится на высоте е М над уровнем моря (т. А рис. 2.13), то луч зрения идущий по касательной к земной поверхности, определяет на земной поверхности малый круг аа , радиуса D .

Рис. 2.13. Дальность видимости горизонта

Это было бы верно, если бы Землю не окружала атмосфера.

Если принять Землю за шар и исключить влияние атмосферы то, из прямоугольного треугольника ОАа следует: ОА=R+e

Так как величина чрезвычайно мала (для е = 50м при R = 6371км – 0,000004 ), то окончательно имеем:

Под действием земной рефракции, в результате преломления зрительного луча в атмосфере, наблюдатель видит горизонт дальше (по кругу вв ).

(2.7)

где х – коэффициент земной рефракции (» 0,16).

Если принять дальность видимого горизонта D e в милях, а высоту глаза наблюдателя над уровнем моря (е М ) в метрах и подставить значение радиуса Земли (R =3437,7 мили = 6371 км ), то окончательно получим формулу для расчета дальности видимого горизонта

(2.8)

Например:1) е = 4 м D е = 4,16 мили; 2) е = 9 м D е = 6,24 мили;

3) е = 16 м D е = 8,32 мили; 4) е = 25 м D е = 10,4 мили.

По формуле (2.8) составлена таблица № 22 «МТ-75» (с. 248) и таблица № 2.1 «МТ-2000» (с. 255) по (е М ) от 0,25 м ¸ 5100 м . (см. табл. 2.2)

Дальность видимости ориентиров в море

Если наблюдатель, высота глаза которого находится на высоте е М над уровнем моря (т. А рис. 2.14), наблюдает линию горизонта (т. В ) на расстоянии D е(миль) , то, по аналогии, и с ориентира (т. Б ), высота которого над уровнем моря h M , видимый горизонт (т. В ) наблюдается на расстоянии D h(миль) .

Рис. 2.14. Дальность видимости ориентиров в море

Из рис. 2.14 очевидно, что дальность видимости предмета (ориентира), имеющего высоту над уровнем моря h M , с высоты глаза наблюдателя над уровнем моря е М будет выражаться формулой:

Формула (2.9) решается с помощью таблицы 22 «МТ-75» с. 248 или таблицы 2.3 «МТ-2000» (с. 256).

Например: е = 4 м, h = 30 м, D П = ?

Решение: для е = 4 м ® D е = 4,2 мили;

для h = 30 м® D h = 11,4 мили.

D П = D е + D h = 4,2 + 11,4 = 15,6 мили.

Рис. 2.15. Номограмма 2.4. «МТ-2000»

Формулу (2.9) можно решать и с помощью Приложения 6 к «МТ-75» или номограммы 2.4 «МТ-2000» (с. 257) ® рис. 2.15.

Например: е = 8 м, h = 30 м, D П = ?

Решение: Значения е = 8 м (правая шкала) и h = 30 м (левая шкала) соединяем прямой линией. Точка пересечения этой линии со средней шкалой (D П ) и даст нам искомую величину 17,3 миль. (см. табл. 2.3).

Географическая дальность видимости предметов (из табл. 2.3. «МТ-2000»)

Примечание:

Высота навигационного ориентира над уровнем моря выбирается из навигационного руководства для плавания «Огни и знаки» («Огни»).

2.6.3. Дальность видимости огня ориентира, показанная на карте (рис. 2.16)

Рис. 2.16. Дальности видимости огня маяка, показанные

На навигационных морских картах и в навигационных пособиях дальность видимости огня ориентира дана для высоты глаза наблюдателя над уровнем моря е = 5 м, т.е.:

Если же действительная высота глаза наблюдателя над уровнем моря отличается от 5 м, то для определения дальности видимости огня ориентира необходимо к дальности, показанной на карте (в пособии), прибавить (если е > 5 м), или отнять (если е < 5 м) поправку к дальности видимости огня ориентира (DD К ), показанной на карте за высоту глаза.

(2.11)

(2.12)

Например: D К = 20 миль, е = 9 м.

D О = 20,0+1,54=21,54мили

тогда: D О = D К + ∆ D К = 20,0+1,54 =21,54 мили

Ответ: D О = 21,54 мили.

Задачи на расчет дальностей видимости

А) Видимого горизонта (D e ) и ориентира (D П )

Б) Открытие огня маяка

Выводы

1. Основными для наблюдателя являются:

а) плоскости:

Плоскость истинного горизонта наблюдателя (пл. ИГН);

Плоскость истинного меридиана наблюдателя (пл. ИМН);

Плоскость первого вертикала наблюдателя;

б) линии:

Отвесная линия (нормаль) наблюдателя,

Линия истинного меридиана наблюдателя ® полуденная линия N-S ;

Линия Е-W .

2. Системами счета направлений являются:

Круговая (0°¸360°);

Полукруговая (0°¸180°);

Четвертная (0°¸90°).

3. Любое направление на поверхности Земли может быть измерено углом в плоскости истинного горизонта, принимая за начало отсчета линию истинного меридиана наблюдателя.

4. Истинные направления (ИК, ИП) определяются на судне относительно северной части истинного меридиана наблюдателя, а КУ (курсовой угол) – относительно носовой части продольной оси судна.

5. Дальность видимого горизонта наблюдателя (D e ) рассчитывается по формуле:

.

6. Дальность видимости навигационного ориентира (днем в хорошую видимость) рассчитывается по формуле:

7. Дальность видимости огня навигационного ориентира, по его дальности (D К ), показанной на карте, рассчитывается по формуле:

, где .


При геодезических работах, выполняемых на небольших по площади участках местности, уровенную поверхность принимают за горизонтальную плоскость. Такая замена влечет за собой некоторые искажения в длинах линий и высотах точек.
Рассмотрим при каких размерах участка этими искажениями можно пренебречь. Допустим, что уровенная поверхность является поверхностью шара радиуса R (рис.1.2). Заменим участок шара АоВоСо горизонтальной плоскостью АВС, касающейся шара в центре участка в точке В. Расстояние между точками В (Во) и Со равно г, центральный угол соответствующий данной дуге обозначим а, отрезок касательной

ВС = t, тогда в горизонтальном расстоянии между точками В (Во) и Со возникнет ошибка Ad = t - d. Из рис. 1.2 находим t = R tga и d = R a, где угол а выражен в радианах a = d / R, тогда A d =R(tga -a) а так как значение d незначительно по сравнению с R то угол настолько мал,
о

что приближенно можно принять tga -а = а /3. Применив формулу определения угла а, окончательно получаем: A d = R- а /3 = d /3R . При d = 10 км и R = 6371 км погрешность определения расстояния при замене сферической поверхности плоскостью составит 1 см.Учитывая реальную точность, с которой производят измерения на местности при геодезических работах, можно считать, что на участках радиусом 2025 км погрешность от замены уровенной поверхности плоскостью не имеет практического значения. Иначе обстоит дело с влиянием кривизны Земли на высоты точек. Из прямоугольного треугольника ОВС

(1.2)
откуда
(1.3) где р - отрезок отвесной линии ССо, выражающий влияние кривизны Земли на высоты точки С. Так как полученное значение р очень мало, по сравнению с R, то в знаменателе полученной формулы этой величиной можно пренебречь. Тогда получим

(1.4)
Для различных расстояний l определим поправки в высоты точек местности, значения которых представлены в табл. 1.1, из которой видно, что влияние кривизны Земли на высоты точек сказывается уже на расстоянии в 0,3 км. Это необходимо учитывать при производстве геодезических работ.
Таблица 1.1
Погрешности измерений высот точек на разных расстояниях


l, км

0,3

0,5

1,0

2,0

5,0

10,0

20,0

Р, м

0,01

0,02

0,08

0,31

1,96

7,85

33,40


 


Читайте:



Праздник непослушания (Повесть-сказка) Праздник непослушания герои сказки

Праздник непослушания (Повесть-сказка) Праздник непослушания герои сказки

Михалков Сергей Владимирович Праздник Непослушания Сергей Владимирович Михалков Праздник Непослушания Повесть-сказка "Праздник Непослушания" -...

Почвенный покров южной америки

Почвенный покров южной америки

Страница 1 В отличие от Северной Америки, где изменения в растительном покрове зависят в значительной степени от изменений температурных условий,...

Время танковых атак, василий архипов Мемуары архипов василий сергеевич время танковых атак

Время танковых атак, василий архипов Мемуары архипов василий сергеевич время танковых атак

Доступно в форматах: EPUB | PDF | FB2 Страниц: 352 Год издания: 2009 Дважды Герой Советского Союза В.С.Архипов прошел путь от красноармейца...

Cобытия Второй мировой войны

Cобытия Второй мировой войны

Вторая мировая война считается самой крупной в истории человечества. Она началась и закончилась 2 сентября 1945 года. За это время в ней приняло...

feed-image RSS